
ON MERK’S METHOD OF CALCULATING BOUNDARY LAYER 
TRANSFER 

B. T. CHAO 

Department of Mechanical Engineering, University of Illinais at Urbana-Champaign, Urbana. Illinois 61801, USA 

and 
R. 0. FAGBENLE 

Mechanical Engineering Department, University of Science and Technology, Kumasi, Ghana. 

(Received 25 July 1973) 

Abstract--Merk’s procedure for the computation of boundary layer transfer using wedge solutions is 
examined in detail. The differential equations governing the universal function in the second term of his 
series solution for the momentum and the energy botindary layer equation are in error. Numerical solu- 
tions for the corrected equations have been obtained. In addition, the universal functions associated with 
the two higher order terms are evaluated and tabclated. With the availability of such information, an 
assessment of the accuracy of the results can be made. Examples illustrating the usefulness as well as 

limitations of the method are given. 

skin friction coefficient defined in (28) ; 
diameter of circular cylinder ; 
local heat transfer coefficient ; 
thermal conductivity ; 
reference length ; 
Nusselt number defined in (33); 
Prandtl number; 
radial distance from a surface element to the 
axis of a rotationally symmetrical body; 
Reynolds number, appropriately defined 
where used ; 
temperature; 
velocity component in x-direction ; 
velocity at outer edge of boundary layer; 
velocity component in y-direction ; 
streamwise coordinate measured along sur- 
face from front stagnation point ; 
coordinate normal to surface; 
thermal diffusivity ; 
dimensionless coordinate defined in (7) ; 
wedge variable defined in (10) ; 
dynamic viscosity ; 
dimensionless coordinate defined in (7); 
kinematic viscosity ; 
mass density ; 
shear stress at wall. 

Subscripts 
W. wall condition ; 
00, free stream condition. 

Other symbols are defined in the text. 

1. I~ODU~ION 

THE NEED for a general yet simple procedure for 
predicting the transport behaviour of boundary-layer 
flows has long been recognized. Blasius [l] was among 
the first to introduce the use of universal functions in 
the solution of steady, two-dimensional, laminar, 
constant property boundary layer equations. The 
method requires that the external stream velocities 
be expressed as polynomials of the streamwise 
distance measured from the front stagnation point. 
Generally speaking, the Blasius series is quite effective 
for flows over blunt objects. In the case of slender 
bodies, an excessive number of terms would be 
required in the polynomial representation and the 
series suffers from slow convergence. In an attempt 
to remedy this drawback, Gijrtler [Z] devised 
another series solution based on the momentum 
equation in stretched coordinates which are essenti- 
ally those defined in equation (7). The solution was 
also expressed in terms of universal functions. The 
convergence of Gijrtler’s series is not always superior 
to that of Blasius as has been demonstrated by 
Frksling [3]. GGrtler’s method was employed by 
Sparrow [4] for the analysis of thermal boundary 
layers. It was found that considerably more universal 
functions were required and, as one might expect, 
Sparrow’s procedure shared the shortcomings of 
Glirtler’s method. 

A procedure which belongs to the category of 
‘wedge’ methods and which provides a rigorous 
refinement of the local similarity concept is that of 
Merk [S-J Following Giirtler and Meksyn [6], Merk 
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derived the momentum and energy boundary layer 

equations in the transformed, coordinates (5, q). In 
common with Gortler’s method, his series solution is 
also expressed in terms of universal functions. The 

point of departure is that Gortler expanded the 
‘wedge’ variable ,4 in series of 5 while Merk chose 
the inverse expansion and adopted n as one of the 

independent coordinates. Merk evaluated the first 
term in the series by the asymptotic integration 

method propounded by Meksyn. As in Giirtler’s 
series, the first term corresponds to the local similarity 

solution. Merk presented the differential equation for 
the second term but gave no solution. While we speak 

of Merk’s method, it is appropriate to mention, as 
was done in his paper, that the method is an extension 
or refinement of Meksyn’s procedure. 

Spalding and Pun [7] reviewed fifteen methods for 
predicting laminar heat transfer coefficients at the 

surface of an isothermal object. Each method was 
applied to the calculation of local Nusselt number 
over the front portion of a circular cylinder in cross- 

flow. The results were compared with the solution of 

Frijssling [8] and the experimental data of Schmidt 
and Wenner [9]. Friissling’s solution was regarded as 
‘exact’ for 0 < x/D < @45. On the basis of this study, 

Merk’s method was rated among the top five for its 
accuracy. However, it should be noted that only the 
first term of the series was available then. Spalding 

and Pun also cautioned that their results could not 
be taken as generally valid. Had a surface other than 
the leading portion of a circular cylinder been chosen 
and a streamlined object used instead, the conclusion 

might have been different. 
Evans [lo] numerically integrated the differential 

equation governing the second term in Merk’s series 

for both the flow and the temperature boundary layer 
equation. Based on the several examples studied, 

Evans recorded the unexpected finding : “Indeed, 
there is some evidence. but this is not conclusive, that 

the use ofjust one term in the series will generally give 
better agreement with the other methods and with 

experiment than the use of two terms, ” A re- 
examination of the form of the series solution appro- 
priate to the governing equations led the first author 
(BTC) to discover that the differential equations given 
by Merk for the second term of the series for both the 
flow and the temperature boundary layer were in 
error. So were the equations used by Evans. This is 
particularly unfortunate in view of the fact that Evans 
performed extensive numerical computations based 

on the incorrect equations. The error in Merk’s 
equation was earlier reported by Bush [l l] in a brief 
research note which apparently escaped Evans’ 
attention. Nor were we aware of the work until the 

final stage of this investigation. However, the “cor- 
rected” equation presented by Bush contains not 
only the wedge variable but also a second parameter 
involving its derivatives, namely, 

An essential feature of Merk’s scheme is that it makes 

possible rapid calculations of the significant boundary 

layer quantities with the aid of a limited number of 
universal functions which can be tabulated once and 

for all. This advantage is to a large extent lost if Bush’s 
development is followed. 

The purpose of the present investigation is to 
present a reappraisal of Merk’s procedure by pro- 
viding, first, the corrected sequence of the differential 
equations governing the universal functions associ- 

ated with the method and, secondly, to provide a 
tabulation of these and other related functions. With 
the availabrlity of such tabulation, the determination 

of the local wall shear and the surface heat transfer 
rates over smooth. isothermal objects of arbitrary 
shape becomes a simple matter, once the outer stream 
velocity distribution is known. The development of 

the boundary layer and details of the velocity and 
temperature fields can be obtained with equal ease. 

2. GOVERNING EQUATIONS 

The conservation equations for steady, laminar, 
non-dissipative, constant property, two-dimensional 
or rotationally symmetrical boundary layer flows are 

well known and are given in Merk’s paper. For the 
convenience of the reader, they are reproduced below. 

dU d2u 
u=u-+v> 

dx Fy 
(1) 

In the continuity equation, r is the radial distance 
from a surface element to the axis of the rotationally 
symmetrical body. It should be dropped for two- 
dimensional flows. 

The boundary conditions considered by Merk are, 

for y=O:u=r=O and T=T, (4) 

for y -+ co: u = U(x) and T = T,. (5) 

Both T, and T, are constants. 
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The continuity equation is identically satisfied by ducing a dimensionless temperature function 0 de- 

introducing a stream function $(x, y) defined by lined by 

LW LW 
UC----, I]= ---. 

r SY r C?X 
(9 

T - T, 
~- = et, $3 
Tm - Tw 

(13) 

In (9 and other equations which follow, one needs the thermal energy equation transforms to 
only to set r = L for two-dimensional flows. The 
(x,y) coordinate system is transformed into the 
dimensionless (5, PI) system according to, 

0’1 + Prf# = 2Prl (?cD-c. 
853 rl) 

(14) 

x 

U r2 dx 
The boundary conditions are 

r= ~~~ s Re*Ury 

m tl= 25 U,LL’ C-1 
(? 0 = 0 for r~ = 0, and 0 = 1 for TV --) co. 

0 (15) 
where U, is a reference velocity, taken as the un- 
disturbed, uniform velocity of the oncoming flow and 

At this juncture, Merk made a pivotal step in his 

Re = U,L/v. A dimensionless stream function f is 
development. Since n depends only on x, so does <. 

introduced, such that 
Hence, one may regard A as a function of 5, as was 

the view taken by Giirtler, or, conversely, one may 

$(x, Y) = U,-W5/W*f(57 4. (8) regard 5 as a function of A. On this basis, Merk wrote 

It follows then 
the solution of (11) as follows, 

U Zf 

u=$ 
(94 

.I7434 =fo(A4 + 26$fI(n,d + . ..- (19 

Substituting (19 into (11) and (12) followed by 

equating coefficients, he found 

(17) 

where A is the ‘wedge variable’ defined by fo=fb=O for r1=0, and f&=1 
I 

(10) 

It was named by Gortler as the principal function. 
The outcome of the transformation is that the 

momentum equation becomes 

f”’ +ff” + /I[1 - (f?2] = 26$$, (11) 

and the boundary conditions are 

f=f’=O for q=O, and f'=l for q-*co. 

(12)Z 

The primes denote differentiation with respect to q 
while a(f’, f)/a([. q) is the Jacobian. Upon intro- 

for q+co. J 

However, the equation for fi given by Merk was in- 
correct. Because of the presence of the Jacobian in 

(1 l), the differential equation for fl depends on how 
one chooses to express the third term in (19. If one 
treats 2<(dn/dr) as a small expansion parameter and 
writes the third term as 

as was done by Bush, then 

t In equation (1 lb) of Merk’s paper, the term 2& dr/dt C4 4 

is inadvertently omitted. 
$ In general, the first boundary condition should read 

with 

f+ 2~3t7fl&3 = 0 as is obvious from equation (9b). How- 
ever, for impervious surface, it is possible to assign f = 0 at 

fi=f; =0 for q=O, and f;=O 

the wall and hence c?~/c?C also vanishes. for q--+co. 

H.M.T. I712-~ 
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When one compares (18) with the corresponding 
equation given by Merk, one finds that the term 
involving 2[1 + t(d’n/dc’)/(dn/dg)] is missing. The 
solution of (18) would obviously depend on A and 
<[(dz,4/d<*)/(d,4/dy)]. Hence, it is totally impractical 
for tabulatiion. This difficulty is overcome by 
choosing a different series forf({, q). Accordingly, we 
write 

Upon substituting (19) into (11) and (12) and equating 
coefficients, we find that the equation for& remains 
unaltered, but the equation for fi becomes 

f;” +f& - 2(1 + 4&f; + 3fb’fi = 

af &fo) =---^-- 
aA, 4 ’ 

with (20) 

fi=f;=O for q=O, and f;=O 

for n+co. 

The remaining two equations in the hierarchy for 
which numerical solutions have been obtained are: 

f;S’ +fcJf;’ - 2(2 + Alfbf; + 5fif2 =fb f; 

- f ‘dfi. 

with 

I 

(21) 

f2=f;=0 for q=O, and f;=O 

for n+co, 

and 

f’;’ +fof;’ - 2(2 + A)fbfL-t 5fif3 
7 

_ a(f;qfo) I Wb~fi) + (2 + A)(f I )2 

&% 4 %4 tt) 
1 

with 

f3=fj=0 for q=O, and f; =0 

for II’ X3. 

An inspection of the foregoing set of equations shows 
that they can be integrated as if they were ordinary 
differential equations since, for any given streamwise 

location, A is fixed. Furthermore, allf,‘s (i = 0, 1.2,. . .) 
are universal in the sense that they depend on a single 
parameter A. As such, they can be tabulated once 
and for all. 

The appropriate series solution for (14) is analogous 
to that for (11). It is 

+ (2~$!)(4i’$)Or,JA.$ + . . . (23) 

A straight forward calculation leads to the following 
set : 

Pr-‘Bd + f& = 0, 

with (24) 

e,=o for q=o,eO=i for ~-CO, 

a(e,,fd 
Pr-‘8;’ + foe; - 2ffbei = ~- - 

Z(A, d 
3fi@& (25) 

Pr-‘8;’ + foe; - 4f be, = f; 0, - f,Wb - 5f2@& 

Pr-‘8’; + foe; - 4fbe, = -- 
wl, fo) + wb fd 

a(A, tl> a(A, ~1 

+ 2f;e, - 3fie; - 5f3e0, 

etc. The boundary conditions for the last 
equations are: Bi = 0 for n = 0 and for tl 
where i = 1,2 or 3. 

(27) 

three 
--* 00, 

3. FRICTION COEFFICIENT, DISPLACEMENT AND 
MOMENTUM THICKNESS, AND NUSSELT NUMBER 

The equations for 1; and 0,(i = 0, 1,2 and 3) have 
been numerically integrated and the main results are 
tabulated in the Appendix. With the aid of such 
tabulation, the calculation of local wall shear, the 
development of the displacement and momentum 
thickness and the local Nusselt number become a 
simple matter. The necessary input is the streamwise 
velocity distribution at the edge of the boundary 
layer, V(x), which may be deduced from experiments 
or estimated from theory. In this section, we have 
brought together the various formulas required for 
the calculation. 

Defining the local friction coefficient by 

(28) 



On Merk’s method of calculating boundary layer transfer 227 

we find, after transformation, 

(29) 

in which Re = U,Lfv, as has previously been defined. 
The displacement and the momentum thickness 

are defined in the usual way, i.e. 

placement and momentum thickness associated with 
the locally similar boundary layer. These boundary 
layer functions are also tabulated in the Appendix. 

We define the local Nusselt number as 

(33) 

as was done by Merk. It follows then 

NuRe-* = :‘(2,-* 
co 

m m + 4g2 
6, = dy, 

0 

(30) 

and the corresponding dimensionless counterparts 
are 

r U Re +6, 
(1 -Jldq=ty g Z 

0 
(31a) 

m 
0 

m 

S; = 

s 
f’(1 -f’)dq =;E g ‘;. 

0 
(31b) 

0 

It can be demonstrated that, 

- 
( > 
26d$ 2fJ,n, co) - , (324 

(32b) 

where 

a;, = yfb(l - fb) dtl, 1, = 7 _f;(l - %o)d% 
0 0 

12 = hl - Yb)drl, 
0 

and I, = r [f;(l - 2&) - (f;)‘] dq. 
0 

We note that ST, s and ST,, are respectively the dis- 

4. NUMERICAL SOLUTIONS AND ESTIMATES OF 
THEIR ACCURACY 

The differential equations for fi and &(i = 0, 1,2 
and 3) given in Section 2 were numerically integrated 
using a seven-term Taylor expansion scheme on 
IBM 360/75 digital computing system. The double 
precision arithmetic was employed in all computa- 
tions. Data for twenty-seven values of A ranging from 
-@15 to 1-O and for seven values of Pr ranging from 
@Ol to 100 have been computed and tabulated. A few 
cursory comments on our experience are given 
below; details may be found in a dissertation by 
Fagbenle [ 121. 

Very high accuracy is required of the basic function 
f. since the higher order functions in the hierarchy 
are sensitive to its variation. The selection of the 
integration step size depends on the precision of the 
numerical results desired, the number of terms 
retained in the Taylor expansion, the iterative scheme 
used, and the computation time allowed. After 
several trials, the integration step sizes finally 
selected were: nq = BOO5 for 0 < q < 01 and 
81 = @Ol for q >, @l. The iteration was to continue 
until the following condition was met : 

(1 -fb(As,)) < lo-l2 

where qm denotes some large value of q. A value of 8 
was found to be adequate in that the computed 
second wall derivative fS(n, 0) exhibited no change 
up to the twelfth significant digit when the computa- 
tion was repeated with qa > 8. The results for 
f&i,O) obtained in this way agreed with those 
published by Elzy and Sisson [13] within very close 
limits for all A’s investigated. For example, when 
n = -019, we iindfz(n, 0) = 008569975180 which 
may be compared with 0085699745 reported by Elzy 



228 B. T. CHAO and R. 0. FAGBENLE 

and Sisson. When n = l-0, the corresponding values given by Howarth himself. Schijnauer employed a 
are I.23258765687 and 1.2325877. finite difference scheme in which h denotes the mesh 

The integration of the f, equation requires the size in the direction of the main stream and n is the 
evaluation of the derivatives ij”/zln and ~~L/SLI. A number of subdivisions normal to it. In Table l(b) 
second order central difference representation was the data for a circular cylinder in cross flow are 
used, i.e. compared with the difference-differential solutions of 

! _. - ~ _~~.~ _ .._.. 

c?fo -j&4 + 26/I, pi) + Sfo(n + AA, q) - S&M - AA, q) -I- f&I - 2L4, ‘I) I 
-^y __-- ---.. --- 
i?n 12AA 

and the final choice of An was 0001. The integration 
step sizes used forfi and f2 were the same as those 
used forfo but larger values were used forf3 as the 
demand on accuracy became less stringent. A more 
relaxed condition 

/f&4, q,)j < 10-6, i = 1.2.3 

was used to halt iteration in order to conserve com- 
putation time. Unlike the case off,, further iteration 
beyond this point did not produce significant reduc- 
tion in the residue 1 f&4, q,) 1 and only very minor 
change infi’(n, 0) was observed. 

We are not aware of any direct means of ascer- 
taining the accuracy of our numerical program forf,. 
A possible approach is to select flow situations for 
which solutions are available and for which the 
contribution ofj, is greater than that off2 andf, by 
an order of magnitude. It has been found that at 
suitable locality in the linearly retarded stream of 
Howarth [14] and of the forward portion of a 
circular cylinder in crossflow, the calculation of the 
local skin friction coefficient satisfies the foregoing 
requirement. In Table l(a), the results for the Howarth 
flow are compared with those reported by Hartree 
[Is] and by Schiinauer [16] in addition to those 

Terrill [17] and the finite difference solutions of 
Schcnauer. The evidence presented, though limited 
in scope, lends support to our contention that the 
numerical program is satisfactory. 

Very high accuracy is also required of the tempera- 
ture function 0, for the same reason as that given for 
fO. As one might expect, the Prandtl number has a 
decisive influence on q,: when Pr = 100, q, 2: 1.8 
and when Pr = 0.01, qrn N 60. The integration step 
sizes used were identical to those selected for f0 when 
Pr > 0.7. However, for Pr = 0.1 and 0.01. A? was 
increased to 0.05 for q > 5. The wall derivatives 
0&i, 0) evaluated in this manner agree with the data 
reported by Elzy and Sisson up to the eighth (which 
is also the last) significant digit for the entire range of 
Pr and _4 investigated. 

A second order central difference scheme was used 
for the evaluation of ZO,/aA and d0J~A, as was done 
for the computation of &,,@A. For ali Pr greater than 
O-1, An was also OGOl. However. in the case of 
Pr = O-1 and O-01, the computed results for 8, were 
not satisfactory when n is close to unity. In this 
region, f?l becomes relatively insensitive to changes 
in ,4. There is some evidence that the roundoff errors 
might be accentuated as extended regions of integra- 

Table 1. Comparison of&@-* calculated from different methods 
(a) Howarth flow, U = U,(l - x/L), )cy = s,/pU’. and Re = Uxh 

SchGnauer Present study 

S/L Howarth Hartree 
t? = 300 200 No. of terms in equation (29) 
h = 5 X 1w4 2.5 x 1o-4 1 2 3 4 

0.0250 0.29102 029188 029130 0.29170 t327924 O-29216 a29171 0.29090 

(b) Circular cylinder in cross flow, U = 2U, sin 2x/D, icr = z,/pUj, and Re = U,Dh 

2xp 

030 
050 

SchGnaner Present study 
..__________ _~~_. ._ - -. -____-____ --- --.---- _____ --...___-- 

Terrill 
n = 300 100 No. of terms in equation (29) 
h=0005 00x 1 2 3 4 

1.4276 1.4276 1.4276 1.4263 1.4275 1.4275 1.4274 
2.2300 2.2300 2.2304 2.2243 2.2302 2.2301 2.2300 
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tion are involved when the Prandtl number is small ness and the velocity and temperature fields are 
(q, 1: 20 for Pr = 0.1 and q, N 60 for Pr = 001). It compute&and compared with prior published results 
is possible that improved results may be obtained by whenever possible. in the interest of conserving 
using a An greater than O@Ol, but this has not been space, only a few are given here. Readers are referred 
done. to [12] for more complete information. 

5. TABLES OF SIGNIFICANT WALL DERIVATIVES 
AND OTHER RELEVANT FUNCTIONS 

In most applications, it is usually the surface 

6.1 Flow over inclinedflat surface 

characteristics, such as the local wall shear and the 
heat transfer rates, which are of interest. The calcu- 
lation of these quantities requires only the information 
on the wall derivatives, as is obvious from (29) 
and (34). Those for the velocity functions &‘(A. 0) 
are given in Table A.1 in the Appendix and those for 
the temperature functions @&i, 0) are given in Table 
A.Z(a)-(g) respectively for Pr = 0.01, 0.1, 0.7, 1, 5, 
10 and 100. One may notice that the data are tabu- 
lated at unequal intervals of A. The reasons are 
twofold. First, ,4 = O-5 and 1 correspond respectively 
to the front stagnation point of the rotationally 
symmetrical and two-dimensionai boundary layer 
flows. Second, in the vicinity of the front stagnation, 
either two-dimensional or rotationally symmetrical, 
A is a slowly varying function of 5 or x. Hence, in 
such regions, smaller increments in n are provided. 
The inaccuracies in the data are judged to be confined 
to the last digit quoted. For reasons already given 
some results for Pr = 0.1 and @Ol and for large values 
of n are uncertain and, hence, are omitted in the 
tabulation. 

A well known boundary layer flow is that along a 
flat surface inclined at a small angle to the mainstream. 
The velocity at the edge of the boundary layer varies 
linearly with distance along the surface according to 

“02 I... 

where L is the inverse of the absolute magnitude of 
the velocity gradient (d/dx)(U/U~). In (35) and other 
expressions which follow, the positive sign is for 
accelerated flow and the negative is for decelerated 
flow. The case of the retarded flow was first studied 
in detail by Howarth. It is of particular interest since 
the reliability of most approximate methods deterio- 
rates rapidIy for boundary layers under an adverse 
pressure gradient even though they may be quite satis- 
factory for favourable pressure gradients. Further- 
more, results of local friction coefficient evaluated by 
Schijnauer [16] and by Smith and Clutter [18] who 
used a difference-differential scheme of integration 
are available for comparison. 

Table A.3 and Table A.4 are to be used in con-. 
junction with (32a) and (32b) for the computation of 
the displacement and the momentum thickness of 
the boundary layer. 

The determination of the velocity and the tempera- 
ture fields in the boundary layer requires computer 
printouts of the fi and Bi functions. These are on 
deposit in the Heat Transfer Laboratory of the 
University of Illinois at Urbana-Champaign. Alterna- 
tively, they may be generated from the computer 
program developed in this study. 

If we write, for convenience, C = I + (x/L), then 
25 = i(C2 - l), /i = 1 - C-*, 2{(d.4/d5) = 2C-2 
(1 - C-*) and 4&d2n/dc2) = - 8C-*(l - C-3”. 
The variations of these functions with distance 
measured along the surface are shown in Fig. 1. In 
retarded flows, 25(dA/dQ is negative, but it is positive 
in accelerated flows and attains a maximum value of 
0.5 at x/L = 0.4142. 

6. ILLUSTRATIONS 

To evaluate the usefulness and limitations of Merk’s 
method, a number of non-similar boundary layer 
flows have been analyzed. They include flows over 
inclined flat surfaces, flow over an airfoil, cross flows 
around elliptical cylinders of several aspect ratios 
including the circular cylinder and, for the rotation- 
ally symmetrical boundary layer, flow over a sphere. 
The local friction and heat transfer coefficients, the 
development of displacement and momentum thick- 

The computed wall friction data, expressed as 
csRe-f/2, (cf = 2z,JpU” and Re = Ux/v), are sum- 
marized in Table 2. In retarded flows, there is a 
significant difference between the present two-term 
results and those of Evans. The discrepancy is less 
pronounced in accelerated flows because the series in 
(29) is then dominated by the first term for which the 
equation given by Merk and later by Evans are 
identical to ours. It should be noted that the Merk 
series becomes semi-divergent for large negative 
values of A and, in such instance, Euler’s transforma- 
tion is employed for the evaluation of the sum. In 
Table 2, data calculated from the straight 4-term sum 
are also shown for the purpose of comparison. They 
are fenced in dotted rectangular boundaries. The 
series developed by Howarth was originally intended 
for retarded flows. As it turned out, it could be used 
for accelerated flows by simply changing the sign of 
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FIG. 1. Variation of {, A, 25 dA/dg and 45’ d2A/dt2 in 
linearly retarded and accelerated flows. 

_1 

0 05 10 15 20 25 3-o 

ye “Ii&~ 

1. “I 

FIG. 2. Velocity distribution in boundary layers with linearly 
retarded and accelerated mainstream. 

A A=0 } Howarth’s sews 

v ~~0.2 , (7 Terms) 

x/L in his series. However, it fails to converge for 

large values of x/L. When this occurs, the series is 
assumed to be semi-divergent? and Euler’s method of 
finding the approximate sum is again used. The 
evidence provided by the data in Table 2 contradicts 
Evans’ statement “Merk’s approach, in common with 
many other general methods, appears to break down 
when it is applied to a retarded flow, certainly when 
it is used to estimate the drag coefficient, . . . “. 

We have also evaluated the u-velocity distribution 
using (9a) and (19). The results are shown as full lines 

? It is not certain if this assumption could be justified. 

in Fig. 2. Included for comparison are discrete data 
calculated from Howarth’s series. The latter becomes 
unreliable for A = 0.4 and 0.7, and hence, no com- 
parison is made for these large A’s. 

The local heat transfer results, expressed as 
NuRe-f for an isothermal flat surface in a fluid of 
Pr = 0.7 are summarized in Table 3. The data are, to 
a large extent, self-explanatory. The experimental 
information was reported by Biiytikttir et al. [19]. 
While their study was aimed at examining the com- 
bined effects of free stream turbulence and pressure 
gradient on heat transfer, their measurements did 
include those for low levels of turbulence and for 
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0 Data read from Buyuktur 
and Kestln curve (1965) 

0 
0 05 10 15 20 25 3-o 35 

,‘C 7 
y, z! 
71’ vx 

FIG. 3. Temperature distribution in boundary layers with 
linearly retarded and accelerated mainstream. Pr = 0.7. 

laminar boundary layers. These were taken at 
x/L = 01048 and 0.2009. Btiytikttir and Kestin [20] 
obtained a series solution for the energy boundary 
layer equation using a method analogous to How- 
arth’s. As such, it also fails to converge for large 
positive values of x/L In Fig. 3, the temperature pro- 
files calculated from the 4-term Merk series for both 
retarded and accelerated flows are compared with 
data reported by Btiyiikttir and Kestin. The agree- 
ment is very good indeed. Temperature profiles for 
Pr = 100 have also been computed and they, too, 
exhibit excellent agreement. 

6.2 Elliptical cylinder in crossJow 

The Blasius-F&sling method of solution requires 
that the external stream velocity distribution be 
expressed in polynomials of x. For slender objects, 
such as an elliptical cylinder of large major-to-minor 
diameter ratio and oriented with its major axis parallel 
to the oncoming stream, the number of terms in the 
polynomial representation could become unwieldily 
large even if only modest accuracy is desired. This is 
a major handicap of the method as has long been 
known. The Merk method is free from this difficulty. 

Schubauer [21] measured the velocity distribution 
in the two-dimensional laminar boundary layer over 
an elliptical cylinder using hot wire anemometry. The 
major and minor diameter of the cylinder were 1 I.78 
and 3.98 inches respectively and, hence, the aspect 
ratio was 2.96. The impinging airstream was parallel 
to the major axis. Schubauer also measured the static 
pressure distribution along the surface and calculated 
therefrom U, dU/dx and d2U/dxZ. He reported all 
data in appropriate dimensionless quantities, using 
the uniform velocity of the oncoming stream as the 

reference velocity and the minor diameter 26 of the 
ellipse as the reference length. If we denote: i? = 
UfU,, and X = x/2b, then 

x 
-, U 

l = gdjz, A = 25, and 
U2 

d/I _=2~+25’(u32 EY-2 
[ 1 

(36) 
d[ U= UQ (U32 ’ 

where the prime denotes differentiation with respect 
to 2. Schubauer tabulated the data for Q, V and 
nI?/(8’)2 at various X’s and hence the Merk vari- 
ables listed in (36) can be readily evaluated. The 
second derivative (d2A/d<“) was computed from the 
first derivative using the central difference formula. 
The results so obtained are plotted in Fig. 4. In 
Schubauer’s experiments, the first measurement sta- 
tion was located at x/2b = 0.175. However, in the 
region 0 < x/26 < 0,175, the potential velocity distri- 
bution is expected to prevail. The dotted curves in 
Fig. 4 were based on the potential theory. 

With the availability ofinformation on A, 2&dA/d5) 
and 4[2(d2A/d<2), the u-component of the velocity 
field in the boundary layer can be easily computed 
with the aid of the computer printout forfi(A, r~). The 
results for x/2b = 0545, 1.097 and 1.457 are plotted 
and compared with Schubauer’s measured data in 
Fig. 5. The agreement is as good as one may expect 
for the smallest x/2b cited. The discrepancy is most 
pronounced for the largest x/26 and in the outer 
region of the boundary layer. Once again, this is due 
to the fact that, under the said circumstance, the 
Merk series is non-converging and there are not 
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FIG. 4. Variation of 5, A, 25 dA/d( and 45’ d2A/dr2 over 
Schubauer’s elliptical cylinder. a/b = 2.96. 
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FIG. 5. Comparison of predicted velocity distribution in 
boundary layers over Schubauer’s elliptical cylinder with 

experiments. 

enough terms available for an effective application of ranging from @Ol to 100 are exhibited in Fig. 7. We 
Euler’s procedure. are not aware of any data available for comparison. 

The local friction coefficient and the development 
of the displacement and the momentum thickness are 
displayed in Fig. 6. Portions of the curves are shown 
dotted because of the uncertainty in the sum of Merk’s 
series. Included in the figure are the skin friction data 
reported by Smith and Clutter. In the region where 
the Merk series exhibits satisfactory convergence, the 
agreement is very good. The local heat transfer 
results evaluated from the 4-term Merk series for Pr 

7. CONCLUDING REMARRS 

Merk’s method of analyzing the constant property, 

laminar boundary layer flows is theoretically sound 
and convenient to use. Since its introduction in 1959, 
it has not received the attention it deserves. This is 
probably due to the unfortunate error which Merk 
introduced into the differential equations governing 
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0 Calculated by Smith and Clutter 
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x/2 b 

FIG. 6. Skin friction, displacement thickness and momentum 
thickness of boundary layer over Schubauer’s elliptical 

cylinder. 

the universal functions. This error has led to mislead- 
ing conclusions. 

The appropriate series expansions for the flow 
function f and the temperature function 0 are pre- 

sented and the significant wall derivatives of the 
associated universal functions for the first four terms 
of the series solution have been tabulated for wide 

ranges of the wedge variable and of the fluid Prandtl 

number. With the aid of these tables, the local friction 
coefficient and the heat-transfer rates can be readily 

computed once the outerstream velocity distribution 
is known. The determination of the displacement and 

momentum thickness is likewise a simple matter. 
The nature of the convergence of the series provides 

an indication of the reliability of the results. Based 
on the large number of flow configurations examined 
in [12], including the two reported in this paper, it 
may be said that whenever the series exhibits rapid 
convergence, accurate results can be expected. There 
is some evidence, but it is not certain, that if the sum 
of the series (not necessarily convergent) is dominated 
by the first term, the result might still be expected to 
be satisfactory. When the series is semi-divergent, 
Euler’s method of ascertaining the sum should be 
used. However, it is often not possible to obtain the 
accuracy one desires due to the limited number of 
terms available at the present time. 

70 

60 

Reference length I” 

05 IL? 15 
r/2b 

FIG. 7. Predicted variation of local Nusselt number over 
Schubauer’s elliptical cylinder for various Prandtl numbers. 

When the outer stream velocity distribution can be 

accurately described by polynomials of x with a 
limited number of terms, the Blasius series method of 
solution for the flow boundary layer and the F&sling 
series for the temperature boundary layer could yield 
results superior to Merk’s, particularly for the region 
close to separation. This is the case for two-dimen- 
sional boundary layer flows over blunt bodies, such 

as a circular cylinder in cross flow. For slender objects, 
the excessively large number of terms required in the 
polynomial representation often precludes the use of 
the Blasius and the F&sling series. The Merk method 
is not subject to this limitation. 
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APPENDIX 

Table of Universal Functions in Merk’s Method 

Table A.l. Wall derivatives of velocity functions in Merk’s series 

A 

-015 
-010 
- 0.05 

0.0 
@05 
010 
0.20 
025 
027 
030 
032 
035 
0.38 
040 
042 
045 
048 
0495 
0.50 
060 
c-70 
080 
0.85 
a90 
a95 
098 
1.00 

f w 0) 

02163614060 
03192697599 
0.4003225954 
04695999884 
05311296305 
05870352192 
0.6867081810 
a7319408485 
a7493354864 
a7747545803 
a7912822029 
08154917786 
08390515708 
a8544212312 
08695365931 
08917585916 
09134714323 
a9241472445 
a9276800398 
09958364406 
01059807773 
01120267657 
01149345544 
01177727819 
01205461255 
01221807449 
01232587657 

- 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
00 
01 
01 
01 
01 
01 
01 
01 

f iv, 0) 
______ 
-034791425 
-a22259394 
-016658150 
-013328326 
-011081394 
-a94506819 
-072319116 
-a64423273 
-061675179 
-057916482 
-055624668 
-052467156 
-049605168 
-047842063 
-046183291 
-043872015 
-a41750661 
-040754311 
-a40431li2 
-a34775533 
-030336067 
-026771959 
-025244490 
-023857401 
-022593160 
-021887326 
-021436968 

f ;‘(A, 0) 

00 053071271 
00 032254361 
00 023117684 
00 a17790554 
00 0 14266708 

-01 011760066 
-01 a84462348 
-01 073029089 
-01 069105119 
-01 o-63789690 
-01 060580050 
-01 a56200031 
-01 052275156 
-01 049880198 
-01 a47643879 
-01 044556751 
-01 041754735 
-01 040449664 
-01 040027883 
-01 032780850 
-01 a27292074 
-01 023036177 
-01 021258904 
-01 019671607 
-01 018248449 
-01 017464197 
-01 0 16967820 

-01 
-01 
-01 
-01 
-01 
-01 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 

-02 
-02 
-02 
-02 
-02 

-051628 00 
-018908 00 
-010318 00 
-0.65937 -01 
-045895 -01 
-a33722 -01 
-020184 -01 
-016183 -01 
-al4889 -01 
-013203 -01 
-012221 -01 
-010928 -01 
-098137 -02 
-091552 -02 
-085551 -02 
-077506 -02 
-070445 -02 
- a67237 -02 
-066210 -02 
-049446 -02 
-a37883 -02 
-029632 -02 
-026389 -02 
-023598 -02 
-a21184 -02 
-019868 -02 
-a19076 -02 
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Table A.2(a). Wall derivatives of temperature functions in Merk’s series, Pr = a01 

A ebcn, 0) o;(A, 0) fun, 0) o;(A, 0) 

0.1; 0.70805882 -01 0170736 
I.10 a71815184 -01 a 133665 
JO5 0.72470598 -01 0114530 
a0 072957181 -01 0101621 
a05 073342859 -01 a919000 
a10 0.73660988 -01 0.841338 
0.20 a74163766 -01 0.722336 
a25 0.74368440 -01 0675077 
0.27 a74443668 -01 0.657877 
a30 0.74550322 -01 0.633651 
a32 a74617660 -01 0.618454 
a35 Q74713561 -01 a 596947 
0.38 a74803890 -01 a576839 
a40 0.74861286 -01 0564140 
a42 074916592 -01 0551963 
a45 a74995913 -01 0534604 
048 0.75071211 -01 0.518243 
a495 075107461 -01 a510409 
a50 075119346 -01 0507847 
0.60 0.75338460 -01 a461182 
0.70 075527813 -01 0421812 
080 a75693761 -01 a3881P3 
0.85 a75769438 -01 0.373039 
a90 0.75840875 -01 a358964 
a95 0.75908464 -01 0.345811 
0.98 0.75947315 -01 0.338318 
1.00 0.75972547 -01 0.333483 

-02 
-02 
-02 
-02 
-03 
-03 
-03 
-03 
-03 
-03 
-03 
-03 
-03 
-03 
-03 
-03 
-03 
-03 
-03 
-03 
-03 
-03 
-03 
-03 
-03 
-03 
-03 

- 0496979 
-a350353 
-a281752 
-a238810 
-0208302 
-0185132 
-0151449 
-0138719 
-0134165 
-0127843 
-0123912 
-0118418 
-0113348 
-0110189 
-a107160 
-0102918 
-a989336 
-0970516 
- 0.964352 
-0.853897 
-0.763634 
-0.788174 
-0.654899 
-0.625142 
-a596639 
-a580805 
-a570806 

-03 
-03 
-03 
-03 
-03 
-03 
-03 
-03 
-03 
-03 
-03 
-03 
-03 
-03 
-03 
-03 
-04 
-04 
-04 
-04 
-04 
-04 
-04 
-04 
-04 
-04 
-04 

0.1380 
a4399 
a2254 
a1402 
09692 
07167 
a4453 
03670 
a3419 
0.3095 
02908 
a2663 
0.2458 
02338 
a2231 
a2094 
0.1979 
a1930 
a1915 
a172 
al7 

_ 
-01 
-02 
-02 
-02 
-03 
-03 
-03 
-03 
-03 
-03 
-03 
-03 
-03 
-03 
-03 
-03 
-03 
-03 
-03 
-03 
-03 

Table A.2(b). Wall derivatives of temperature functions in Merk’s series, Pr = 0.1 

A @‘o(A 0) &(A, 0) &(A, 0) e;(A, 0) 

-015 a 18392003 00 0.149640 -02 -0.170851 -02 
-010 019043811 00 0.313229 -02 -0.145993 -02 
-005 a19476614 00 0.355800 -02 -0129596 -02 

a0 019803148 00 0.365822 -02 -0117102 -02 
0.05 ,-. 20065329 00 0.363428 -02 -0106993 -02 
0.10 020283959 00 0.355625 -02 -a985358 -03 
a20 020634142 00 0.334175 -02 -0.850196 -03 
a25 020778433 00 a322681 -02 -a794968 -03 
a27 020831732 00 0318101 -02 -0.774683 -03 
a30 020907548 00 a311300 -02 -0745963 -03 
a32 a20955570 00 a306830 -02 -a727862 -03 
a35 0.21024171 00 0.300239 -02 -0.702143 -03 
038 a21089015 00 a293801 -02 - Q677999 -03 
a40 021130336 00 a289600 -02 - 0.662706 -03 
a42 a2ii70240 00 a285476 -02 - 0.648011 -03 
a45 021227624 00 0.279434 -02 -0.627014 -03 
048 a21282268 00 a273568 -02 -0607179 -03 
a495 a21308633 00 a270701 -02 -a597668 -03 
0.50 021317287 00 0269755 -02 -a594555 -03 
0.60 a21477585 00 0251839 -02 -0.537728 -03 
0.70 021617330 00 a235724 -02 - 0489643 -03 
080 021740775 00 0221228 -02 -a448463 -03 
085 0.21797384 00 0.214528 -02 -0430026 -03 
a90 021851006 00 a208163 -02 -0412654 -03 
a95 a21901908 00 a202111 -02 -a396677 -03 
098 021931256 00 a 198622 -02 -a387825 -03 
loo 0.21950324 00 0.196353 -02 -0-382714 -03 

0.5442 
01809 
09630 
0.6198 
a4419 
a3355 
a2172 
a1815 
al698 
al544 
a1454 
0.1333 
al227 
01164 
a1106 
0.1026 
a9555 
a9229 
0.9123 
0.7357 
0.6064 
a5086 
a468 

-01 
-01 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-03 
-03 
-03 
-03 
-03 
-03 
-03 
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Table A.~(c). Wall derivatives of temperature functions in Merk’s series, Pr = a7 

231 

A 

-015 
-010 
-005 

a0 
a05 
ai0 
0.20 
a25 
a27 
a30 
a32 
0.35 
038 
a40 
a42 
a45 
048 
a495 
a50 
060 
a70 
0.80 
0.85 
a90 
a95 
098 
loo 

e&4,0) e;u, 0) e;(A, 0) e;(A, 0) 

036437310 
0.38697144 
0.40223618 
a41391234 
a42339971 
043139604 
044438443 
a44980780 
045182258 
a45469958 
a45652881 
045915149 
a46164123 
046323332 
a46477502 
a46699943 
046912590 
047015489 
0.47049304 
0.41619616 
a48235487 
a48731812 
a48961155 
0.49179451 
a49387645 
a49508063 
a49586569 

00 -a143080 
00 -0170425 
00 Q285552 
00 a504331 
00 0.621307 
00 0.686238 
00 0739469 
00 0.746032 
00 0746471 
00 a745368 
00 0.743667 
00 0.739953 
00 0.735117 
00 0.731395 
00 0.727346 
00 a720770 
00 0.713718 
00 0710051 
00 a70881 1 
00 a682713 
00 0655790 
00 0629120 
00 0.616112 
00 a603385 
00 0590969 
00 0.583675 
00 0.578879 

-01 -a220544 
-02 -0281147 
-02 -a287760 
-02 -a281456 
-02 -a271093 
-02 -a259549 
-02 -0236714 
-02 - a226072 
-02 -a221993 
-02 -a216069 
-02 -0212250 
-02 -0206711 
-02 -0201396 
-02 -al97973 
-02 -0194643 
-02 -0189817 
-02 -0185186 
-02 -0182941 
-02 -0182203 
-02 -al68436 
-02 -0156361 
-02 -0145713 
-02 -0140854 
-02 -0136271 
-02 -0131944 
-02 -0129463 
-02 -0127853 

-02 a1213 
-02 a4058 
-02 a2195 

-02 a1440 
-02 al047 
-02 0.8096 
-02 a5420 
-02 a4599 
-02 04328 
-02 a3968 
-02 03756 
-02 a3470 
-02 03218 
-02 03067 
-02 a2927 
-02 a2735 
-02 O-2563 
-02 02483 
-02 a2457 
-02 a2021 
-02 01695 
-02 al444 
-02 0.1339 
-02 01246 
-02 01162 
-02 01116 
-02 a1086 

00 
-01 
-01 
-01 
-01 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 

Table A.2(d). Wall derivatives of temperature functions in Merk’s series, Pr = 1 

A eb(A, 0) e;(L 0) e;(A, 0) @AA 0) 

-015 040933631 
-010 043679753 
-005 Q45537196 

a0 046959999 
a05 048117747 
a10 049094928 
a20 a50685378 
a25 a51350838 
a27 a51598281 
a30 051951842 
a32 a52176781 
0.35 a52499488 
0.38 0.52Ko6o5g 
a40 0.53002217 
a42 053192256 
a45 a53466610 
048 a53729063 
a495 a53856128 
a50 a53897894 
a60 a54677286 
a70 a55366082 
080 055982323 
085 a56267490 
a90 056539171 
a95 a56798513 
098 a56948621 
loo 057046525 

00 -0197681 
00 -a367636 
00 0220258 
00 a506246 
00 a662242 
00 a751499 
00 as31034 
00 a844630 
00 0.847175 
00 0.848643 
00 0.848322 
00 0.846261 
00 0.842661 
00 0.839567 
00 a836011 
00 0.829956 
00 0.823203 
00 0.819613 
00 0.818389 
00 0791870 
00 a763363 
00 a734592 
00 a720407 
00 0.706453 
00 0.692773 
00 a684710 
00 0.679399 

-01 - 0222206 
-02 -a311802 
-02 -a326815 
-02 -a323329 
-02 -0313613 
-02 -a301732 
-02 -0277044 
-02 -0265257 
-02 -0260709 
-02 -0254078 
-02 -0249787 
-02 -a243547 
-02 -0.237541 
-02 -a233664 
-02 -a229886 
-02 -0224402 
-02 -0219128 
-02 -a216568 
-02 -a215726 
-02 -0199976 
-02 -0186105 
-02 -0173832 
-02 -0168218 
-02 -0162919 
-02 -0157908 
-02 -0155032 
-02 -0153166 

-02 01406 
-02 a4687 
-02 a2534 
-02 al664 
-02 a1210 
-02 09369 
-02 0.6285 
-02 a5339 
-02 05026 
-02 a4611 
-02 04365 
-02 a4035 
-02 0.3745 
-02 a3570 
-02 03408 
-02 a3186 
-02 a2987 
-02 0.2895 
-02 a2865 
-02 02360 
-02 al982 
-02 0.1691 
-02 a1570 
-02 a1461 
-02 01364 
-02 0.1310 
-02 0.1276 

00 
-01 
-01 
-01 
-01 
-o2 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
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Table A.Z(e). Wall derivatives of temperature functions in Merk’s series, Pr = 5 

‘4 
~._ 

-015 
-010 
-a05 

a0 
a05 
ai0 
a20 
a25 
a27 
a30 
0.32 
a35 
038 
a40 
a42 
a45 
048 
a495 
a50 
0.60 
0.70 
0.80 
0.85 
a90 
a95 
098 
lao 

eb(A, 0) 
--____ 
0.68330186 
074362901 
078434114 
0.81556125 
0.84103038 
a86259826 
a89789713 
a91275733 
a91829892 
a92623326 
093129158 
a93856327 
a94548835 
094992835 
a95423682 
096046933 
a96644583 
096934449 
a97029802 
a98816357 
O~loo40734 
010184126 
a 10250840 
010314621 
0.10375712 
O~lo411168 
010434331 

00 
00 
00 
00 
00 
00 
oil 
00 
00 
00 
00 
00 
00 
00 
Ccl 
00 
00 
00 
00 
00 
01 
01 
01 
01 
01 
01 
01 

o;fA, 0) fun, 0) 

-0.558285 -01 -0279369 
-0159038 -01 -0546172 
-0138098 -02 - 0.605684 

0573642 -02 -0.613100 
0969494 -02 -0602159 
a120401 -01 -0584057 
al43397 -01 -0541959 
0148541 -01 -a520945 
a 149889 -01 -0.512747 
0.151329 -01 -0500725 
0151964 -01 - 0492908 
0.152520 -01 -0.481496 
al52682 -01 - a470467 
0152610 -01 -0.463328 
al52417 -01 -0456359 
0.151934 -01 -0446220 
0.151259 -01 -a436451 
a 150862 -01 -0431701 
a 150722 -01 -0430137 
a 147289 -01 - a4oos27 
al43132 -01 -a374914 
al38685 -01 -0351924 
O-136431 -01 -0341391 
0134183 -01 -0331435 
al31954 -01 -0.322015 
0130630 -01 -a316602 
al29755 -01 -0.313089 

-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 

n;W 0) 

02840 
a9337 
a5020 
03284 
02383 
01842 
a1232 
a1045 
09830 
a9013 
as530 
a7881 
0.7310 
0.6966 
a6648 
06214 
05823 
05643 
05585 
a4597 
a3861 
a3295 
a3059 
a2848 
02659 
02556 
a2488 

00 
-01 
-01 
-01 
-01 
-01 
-01 
-01 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 

Table A.2(f). Wall derivatives of temperature functions in Merk’s series, Pr = 10 

A 

-015 0.85084868 00 -0.786843 -01 -a352775 -02 
-a10 093265297 oo -0.228181 -01 -0.724162 -02 
-005 098764038 00 -0281195 -02 -0804489 -02 

a0 al0297473 01 0.689437 -02 -0813420 -02 
a05 a 10640859 01 al22551 -01 -0797758 -02 
a10 alo93l7li 01 al54154 -01 -0772764 -02 
a20 a11408161 01 a185023 -01 -a715619 -02 
a25 011608996 01 0191926 -01 -a687366 -02 
a27 011683941 01 al93739 -01 -a676379 -02 
a30 ail79i3oo 01 0.195684 -01 - a660298 -02 
a32 all859778 01 O-196550 -01 -0649862 -02 
0.35 all958272 01 al97320 -01 -a634650 -02 
0.38 al2052l30 01 0197569 -01 -0619974 -02 
a4o al2112340 01 0197498 -01 -0610488 -02 
a42 ai2l7079i 01 a 197266 -01 -a601237 -02 
a45 a 12255390 01 a 196664 -01 -0587794 -02 
a48 a 12336568 01 a195810 -01 -0.574858 -02 
a495 al2375959 01 0195304 -01 -a568574 -02 
a50 012388920 01 0195125 -01 -a566506 -02 
0.60 012632030 01 a190724 -01 -0.527816 -02 
0.70 a 12848999 01 a185377 -01 -0.493716 -02 
080 013044968 01 a 179654 -01 -0463535 -02 
a85 a13136288 01 0.176754 -01 -a449729 -02 
a90 a 13223684 01 al73862 -01 -a436692 -02 
a95 013307482 01 a170997 -01 - a424366 -02 
0.98 013356154 01 a 169296 -01 -a417288 -02 
I.00 al3387968 01 0168170 -01 -a412696 -02 

&(A, 0) O&I, 0) o;fA, 0) 

03866 
a1265 
0.6783 
a4427 
a3204 
a2470 
01645 
al393 
al310 
at199 
all34 
a 1047 
a9704 
a9242 
O-8816 
a8233 
0.7711 
07469 
a7391 
0.6072 
a5091 
a4339 
a4025 
a3745 
a3495 
03358 
0.3270 

00 
00 

-01 
-01 
-01 
-01 
-01 
-01 
-01 
-01 
-01 
-01 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
-02 
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Table A.2(g). Wall derivatives of temperature functions in Merk’s series, Pr = 100 

239 

A e&4,0) e;(A, 0) 

-015 017772150 
-010 019831270 
-005 021193184 

00 022229058 
005 023071280 
010 023783857 
020 024951462 
02.5 0.25444333 
027 025628429 
030 025892337 
032 026060803 
035 026303307 
0.38 0.26534635 
040 026683160 
0.42 0.26827451 
045 @27036482 
0.48 0.27237280 
0.495 027334199 
0.50 027366898 
060 027970169 
070 028510652 
080 029000712 
0.85 029229140 
@90 029449342 
095 029660300 
098 029783015 
1.00 029863301 

B;(A, 0) &(A, 0) 
- __ 

01 -0210392 00 -0925267 -02 C-1023 
01 -0578866 -01 -0186168 -01 03305 
01 -0671903 -02 - 0202392 -01 01757 
01 0170770 -01 -0201615 -01 01137 
01 0297878 -01 -0195610 -01 a8157 
01 0370567 -01 -0187940 -01 0.6239 
01 0438377 -01 -0172051 -01 04097 
01 0452382 -01 -0164572 -01 03448 
01 0455829 -01 -0161707 -01 03235 
01 0459258 -01 -0157549 -01 02954 
01 0460585 -01 -0154872 -01 02788 
01 0.461413 -01 -0150997 -01 0.2566 
01 0.461106 -01 - 0.147285 -01 0.2372 
01 0.460389 -01 -0144899 -01 02255 
01 0459331 -01 -0142582 -01 02148 
01 0457208 -01 -0139230 -01 02001 
01 0454560 -01 -0136021 -01 01870 
01 0453075 -01 -@134468 -01 01809 
01 0452559 -01 -0133957 -01 01790 
01 0440625 -01 -0124473 -01 C-1461 
01 0426955 -01 -0116205 -01 01219 
01 0.412755 -01 -0108952 -01 01034 
01 0405667 -01 -0105652 -01 09577 
01 0398655 -01 -0102547 -01 08896 
01 0391751 -01 -0996184 -02 08288 
01 0387671 -01 - 0979408 -02 07954 
01 0384979 -01 -C-968537 -02 07742 

Table A.3. Functions related to displacement thickness 

A 
_____ 

-015 
-010 
-0.05 

00 
005 
010 
020 
025 
027 
030 
032 
c-35 
038 
040 
042 
045 
048 
0.495 
050 
060 
070 
a80 
085 
a90 
095 
098 
1.00 

fi(A, ~1 f&t 4 

1.64697 - 1~03100 0164068 -2.00140 
144270 -0559175 0086114 -0.632520 
1.31236 - 0.374228 C-056019 -0310977 
1.21678 - 0274603 0040050 -0183335 
1.14174 -0212536 0030250 -0119524 
1.08032 -0170425 0023699 -@083117 
098416 -0117576 0015649 -0045503 
094533 -0100138 0013054 -@035145 
093111 - 0094253 0012187 -0031889 
091099 - 0086362 0011033 -0027720 
089832 -0081645 0010348 -0025335 
088030 -@075264 0009428 -0022243 
086337 -0069605 0008619 -0.019629 
085263 -0066178 0.008133 -0018107 
0.84229 -0062997 0007684 -0016736 
0.82751 -0.058636 0007072 -0014922 
0.81349 -0054709 0006526 -0013357 
080676 -0052889 0006275 -0012653 
080455 -0052303 0006194 -0012428 
076397 -0042331 CNO4839 -C-O08851 
072910 -0034916 0003858 -0006484 
069868 -GO29251 0003128 -0004835 
068486 -0026907 0002832 -0004210 
067183 -0024826 0002572 -0003678 
065954 -0022969 0002344 -0.003233 
065248 -@021950 0002219 -0002929 
064790 -0021306 0002141 - 0002820 

01 
00 
00 
00 

-01 
-01 
-01 
-01 
-01 
-01 
-01 
-01 
-01 
-01 
-01 
-01 
-01 
-01 
-01 
-01 
-01 
-01 
-02 
-02 
-02 
-02 
-02 



240 B.T. CHAO and R.O. FAGBENLE 

Table A.4. Integrals related to momentum thickness 

A ‘0 = a;,, 
-015 0.545184 
-0.10 a515044 
-005 0490464 

0.0 a469600 
a05 0.451469 
0.10 0.435457 
a20 0408230 
a25 0.396485 
a27 a392074 
0.30 0.385735 
a32 0.381681 
0.35 0.375841 
0.38 0.370267 
0.40 0.366690 
0.42 0.363212 
0.45 0.358191 
0.48 a353373 
0.495 0.351037 
0.50 0.350269 
0.60 0.335906 
0.70 0.323203 
0.80 0.311842 
0.85 0.306601 
0.90 0.301617 
a95 0.296859 
Q98 a294120 
1.00 a292339 

1, 

a173751 -0029827 
0.129761 -0021580 
0103525 -0016755 
0085481 -0013495 
0.072177 -a011133 
0.061939 -0oo9345 
0047243 -0.006837 
0041818 -0005934 
a039909 -0.005619 
0037281 -0005190 
0035671 - 0004928 
0.033443 -0004569 
0.031416 -0004245 
0.030163 - a004047 
0.028368 -0003860 
Q027338 - 0.003603 
0.025824 - 0.003368 
0.025113 -0.003258 
0.024882 - Ooo3222 
Q020850 -a002610 
0017701 -0002145 
0015194 -0.001784 
0.014129 -0001634 
0.013167 -0oo1500 
0.012297 -0oo1380 
0011813 -0.001315 
0.011506 -0.001273 

I 3 

0.238793 
0116992 
0073403 
0050972 
0.037482 
0028619 
0.017979 
0.014636 
0.013532 
0.012076 
0.011218 
0.010076 
OoO908 1 
0.008488 
0007939 
0007209 
0.006561 
0.006263 
0.006167 
0.004595 
0003490 
0.002668 
0002349 
0002071 
a001838 
0.001638 
0.001603 

SUR LA METHODE DE MERK POUR LE CALCUL DU TRANSFERT EN COUCHE 
LIMITE 

R&urn&On examine en detail la procedure de Merk pour le calcul du transfert en couche limite g partir 
des solutions du coin. Sont fausses les equations differentielles gouvernant la fonction universelle dans le 
second terme de sa solution en dtveloppement en serie, pour les equations de quantite de mouvement et 
d’energie. On a obtenu des solutions numeriques des equations corrigees. On a de plus tvalue et tabule 
les fonctions universelles associees aux deux termes d’ordre superieur. Avec une telle information, on 
peut &valuer la precision des r&hats. On donne des exemples qui illustrent la commodite aussi bien que 

les limites de la methode. 

DIE MERK’SCHE BERECHNUNGSMETHODE DES GRENZSCHICHT-OBERGANGS 

Zusammenfassung-Die Merk’sche Methode zur Berechnung von Grenzschichttibergiingen unter Beniit- 
zung von Keillijsungen wird im Einzelnen tiberpriift. Die Differentialgleichungen, welche die universelle 
Funktiqn im 2. Term der Reihenentwicklung ftir Impuls- und Energiegleichung von Grenzschichten 
beeinflussen, sind fehlerbehaftet. Numerische Liisungen fiir die korrekten Gleichungen wurden erhalten. 
Zusltzlich wurden die mit den zwei Gliedem hijherer Ordnung verkntipften universellen Funktionen 
entwickelt und tabelliert. Damit l&St sich die Genauigkeit der Ergebnisse beurteilen. An Beispielen werden 

Brauchbarkeit und Grenzen der Methode gezeigt. 

0 METOjJE MEPKA PACYETA HEPEHOCA I3 HOI’PAHWIHOM CJIOE 

AHHoTaqnJi-Ha npuMepe pt?meHMB Ann KnRHa no~po6~0 paccMaTpHBaeTcH MeTon MepKa 

pacreTa nepeHoca B norpaHwiHoM c3Ioe. &i@$epeHqxanbHbIe ypaBHeHnfl, OnacbIBarorqHe 

yHxBepcanbHym (Py~Kq5i10 BO BT~P~M weHe npe~noxeHHor0 MM peIueakis B BHae pRna ~nfl 

ypaBHeHHB IIOlYpaHHsHOrO CJIOR AJIfJ HMIIyJIbCa II 3HeplWH, RBJIRIOTCR OIIIH6OWIbIMH. nOJIy- 

4eHbI 4ACJIeHHbIe peJ.IIeHIW HCIIpaBJIeHHbIX ypaBHeHMi-4. HpOMe TOrO, IIpOBeAeH paNeT II 

COCTaBjIeHbI Ta6nuqbI YHHBepCaJIbHbIX I$iyHKI@i AJIR AByX YJIeHOB BbICIIIerO IIOpRAKa. npr? 

HaJIWWII TaKOm MHf$IOpMaIJHH MOHCHO C AOCTOBepHOCTbIO l'OBOpllTb 0 TOYHOCTH pe3yJIbTaTOB. 

Ha IIplzMepaX IIOKa3aHbI AOCTOHHCTBa I4 OrpaHHYeHHJ%,CBOtiCTBeHHbIe MeTOny. 


