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Abstract—Merk’s procedure for the computation of boundary layer transfer using wedge solutions is

examined in detail. The differential equations governing the universal function in the second term of his

series solution for the momentum and the energy boundary layer equation are in error. Numerical solu-

tions for the corrected equations have been obtained. In addition, the universal functions associated with

the two higher order terms are evaluated and tabulated. With the availability of such information, an

assessment of the accuracy of the results can be made. Examples illustrating the asefulness as well as
limitations of the method are given.

NOMENCLATURE

¢, skin friction coefficient defined in (28);

D,  diameter of circular cylinder;

h, local heat transfer coefficient ;

k, thermal conductivity;

L,  reference length;

Nusselt number defined in (33);

Pr, Prandtl number;

r, radial distance from a surface element to the
axis of a rotationally symmetrical body;

Re, Reynolds number, appropriately defined
where used;

T, temperature;

u, velocity component in x-direction;

U, velocity at outer edge of boundary layer;

v, velocity component in y-direction;;

x,  streamwise coordinate measured along sur-
face from front stagnation point;

Vs coordinate normal to surface;

o, thermal diffusivity;

. dimensionless coordinate defined in (7);

A,  wedge variable defined in (10);

u,  dynamic viscosity;

¢, dimensionless coordinate defined in (7);

¥, kinematic viscosity;

P mass density;

7., shear stress at wall.

Subscripts
w,  wall condition;
o, free stream condition.
Other symbols are defined in the text.
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1. INTRODUCTION

THE NeeD for a general yet simple procedure for
predicting the transport behaviour of boundary-layer
flows has long been recognized. Blasius [1] was among
the first to introduce the use of universal functions in
the solution of steady, two-dimensional, laminar,
constant property boundary layer equations. The
method requires that the external stream velocities
be expressed as polynomials of the streamwise
distance measured from the front stagnation point.
Generally speaking, the Blasius series is quite effective
for flows over blunt objects. In the case of slender
bodies, an excessive number of terms would be
required in the polynomial representation and the
series suffers from slow convergence. In an attempt
to remedy this drawback, Goértler [2] devised
another series solution based on the momentum
equation in stretched coordinates which are essenti-
ally those defined in equation (7). The solution was
also expressed in terms of universal functions. The
convergence of Gortler’s series is not always superior
to that of Blasius as has been demonstrated by
Frossling [3]. Gortler’s method was employed by
Sparrow [4] for the analysis of thermal boundary
layers. It was found that considerably more universal
functions were required and, as one might expect,
Sparrow’s procedure shared the shortcomings of
Gortler’s method.

A procedure which belongs to the category of
‘wedge’ methods and which provides a rigorous
refinement of the local similarity concept is that of
Merk [5]. Following Gértler and Meksyn [6], Merk
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derived the momentum and energy boundary layer
equations in the transformed, coordinates (£, #). In
common with Goértler’s method, his series solution is
also expressed in terms of universal functions. The
point of departure is that Gortler expanded the
‘wedge’ variable A in series of ¢ while Merk chose
the inverse expansion and adopted A as one of the
independent coordinates. Merk evaluated the first
term in the series by the asymptotic integration
method propounded by Meksyn. As in Gortler’s
series, the first term corresponds to the local similarity
solution. Merk presented the differential equation for
the second term but gave no solution. While we speak
of Merk’s method, it is appropriate to mention, as
was done in his paper, that the method is an extension
or refinement of Meksyn’s procedure.

Spalding and Pun [7] reviewed fifteen methods for
predicting laminar heat transfer coefficients at the
surface of an isothermal object. Each method was
applied to the calculation of local Nusselt number
over the front portion of a circular cylinder in cross-
flow. The results were compared with the solution of
Frossling [8] and the experimental data of Schmidt
and Wenner [9]. Frossling’s solution was regarded as
‘exact’ for 0 < x/D < 0-45. On the basis of this study,
Merk’s method was rated among the top five for its
accuracy. However, it should be noted that only the
first term of the series was available then. Spalding
and Pun also cautioned that their results could not
be taken as generally valid. Had a surface other than
the leading portion of a circular cylinder been chosen
and a streamlined object used instead, the conclusion
might have been different.

Evans [10] numerically integrated the differential
equation governing the second term in Merk’s series
for both the flow and the temperature boundary layer
equation. Based on the several examples studied,
Evans recorded the unexpected finding: “Indeed,
there is some evidence. but this is not conclusive, that
the use of just one term in the series will generally give
better agreement with the other methods and with
experiment than the use of two terms, . . . 7 A re-
examination of the form of the series solution appro-
priate to the governing equations led the first author
(BTC) to discover that the differential equations given
by Merk for the second term of the series for both the
flow and the temperature boundary layer were in
error. So were the equations used by Evans. This is
particularly unfortunate in view of the fact that Evans
performed extensive numerical computations based
on the incorrect equations. The error in Merk’s
equation was earlier reported by Bush [11] in a brief
research note which apparently escaped Evans’
attention. Nor were we aware of the work until the
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final stage of this investigation. However, the ‘‘cor-
rected” equation presented by Bush contains not
only the wedge variable but also a second parameter
involving its derivatives, namely,

>4 /da

“ag ac
An essential feature of Merk's scheme is that it makes
possible rapid calculations of the significant boundary
layer quantities with the aid of a limited number of
universal functions which can be tabulated once and
for all. This advantage is to a large extent lost if Bush’s
development is followed.

The purpose of the present investigation is to
present a reappraisal of Merk’s procedure by pro-
viding, first, the corrected sequence of the differential
equations governing the universal functions associ-
ated with the method and., secondly, to provide a
tabulation of these and other related functions. With
the availability of such tabulation, the determination
of the local wall shear and the surface heat transfer
rates over smooth, isothermal objects of arbitrary
shape becomes a simple matter, once the outer stream
velocity distribution is known. The development of
the boundary layer and details of the velocity and
temperature fields can be obtained with equal ease.

2. GOVERNING EQUATIONS

The conservation equations for steady, laminar,
non-dissipative, constant property, two-dimensional
or rotationally symmetrical boundary layer flows are
well known and are given in Merk’s paper. For the
convenience of the reader, they are reproduced below.

¢ ¢ dU u
u—+v—Ju=U—+v_—, (1)
éx ¢y dx ey?
oru)  o(rv
g Ay, o
éx cy
¢ é T érT 3)
Mé; + v (@ = o *(_”;i“

In the continuity equation, r is the radial distance

from a surface element to the axis of the rotationally

symmetrical body. It should be dropped for two-
dimensional flows.

The boundary conditions considered by Merk are,

for y=0:u=0v=0 and T=T, 4)

and T=T, (5

for y— o:u= Ulx)

Both T, and T, are constants.
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The continuity equation is identically satisfied by
introducing a stream function ¥(x, y) defined by

u=£al// v=—£€l£ 6)

réy r éx

In (6) and other equations which follow, one needs
only to set r = L for two-dimensional flows. The

(x,y) coordinate system is transformed into the
dimensionless (£, 1) system according to,

U r2dx Re\! U ry
=\—5— n1={=) -~ D
U, L 26) U,LL

b

where U, is a reference velocity, taken as the un-
disturbed, uniform velocity of the oncoming flow and
Re = U_L/v. A dimensionless stream function f is
introduced, such that

Y(x, y) = U,LQ2¢/Re) f(E, n). ®
It follows then

u o
_= 9
U o (92)

of
o¢
2¢d ¢

+ <A L 2L 1) T by

where A is the ‘wedge variable’ defined by

"an
26dU
T U g

~ 2 aerept o f v 2e
U ro

r dé

(10)

It was named by Gortler as the principal function.
The outcome of the transformation is that the
momentum equation becomes

oS
1 " A 1 _ 2 = 2 = ,
[+ 57+ AL = (f)*] 66(6"1)

(11

and the boundary conditions are
f=f=0 for =0, and f'=1 for n— .
(12)%

The primes denote differentiation with respect to g
while &(f’, f)/é(£,n) is the Jacobian. Upon intro-

T In equation (11b) of Merk’s paper, the term 2&/r dr/dé
is inadvertently omitted.

1 In general, the first boundary condition should read
[+ 2&ef/08) = 0 as is obvious from equation (9b). How-
ever, for impervious surface, it is possible to assign f = 0 at
the wall and hence &f/&¢ also vanishes.

HM.T. 17/2—€
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ducing a dimensionless temperature function 6 de-
fined by

Tw__% = 0&. ), (13)
the thermal energy equation transforms to
8" + Prfo = 2Pré a0, Q. (14)
o m)
The boundary conditions are
6=0 for =0, and =1 for n—- co.
(15)

At this juncture, Merk made a pivotal step in his
development. Since A depends only on x, so does &.
Hence, one may regard A as a function of £, as was
the view taken by Gértler, or, conversely, one may
regard & as a function of A. On this basis, Merk wrote
the solution of (11) as follows,

f&n) = folA,m) + 25%%“/1, m+.... (16
Substituting (16) into (11) and (12), followed by
equating coefficients, he found

o +fof s+ A[1 = (f)*] =0
with
fo=fo=0 for and f, =1

for n - .

n=0,

However, the equation for f, given by Merk was in-
correct. Because of the presence of the Jacobian in
(11), the differential equation for f; depends on how
one chooses to express the third term in (16). If one
treats 2£(dA/d&) as a small expansion parameter and
writes the third term as

N

12dA2 1
5 fd‘é‘ falA, n),

as was done by Bush, then

1+ Sof1 = 24f0f1 +fofi

d24 /dAa .
+2 1+5E i (fofi —fof?)

_e s Lo
oA, n)
with
fi=f1=0 for =0, and f; =0

for n— 0. )



226

When one compares (18) with the corresponding
equation given by Merk, one finds that the term
involving 2[1 + &(d2A/dEH/(dA/dH] is missing. The
solution of (18) would obviously depend on A and
E[(d*A/dE?)/(dA/dH]. Hence, it is totally impractical
for tabulatiion. This difficulty is overcome by
choosing a different series for f(&, n). Accordingly, we
write

d24
fZ(A’ '7)

d4
(25 —> f3(A, 1)
A d24 )
25& dfz fi A + .

Upon substituting (19) into (11) and (12) and equating
coefficients, we find that the equation for f, remains
unaltered, but the equation for f; becomes

5 f1(/1 m + 48—

(19)

U ffi 20+ N fofy +30h =
_
oA,m’
with (20)
fi=f1=0 for n=0, and f1; =0
for n—- .

J

The remaining two equations in the hierarchy for
which numerical solutions have been obtained are:

3 fofs =22+ Dfofe+ Soh=10f] ]
fO 1
with r(21)
fo=f3=0 for =0, and f, =0
for - o0,
and
3 fofs =22+ Mo f3+ 53 )
f.fo) | oS0 f) ,
N 6{/; ’l; 6(/(1),71; te+ Ay
=311 r(22)
with
fi=f3=0 for =0, and f53=0
for n—> .

An inspection of the foregoing set of equations shows
that they can be integrated as if they were ordinary
differential equations since, for any given streamwise
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location, A is fixed. Furthermore, allf;’s (i = 0,1,2,..)
are universal in the sense that they depend on a single
parameter A. As such, they can be tabulated once
and for all.

The appropriate series solution for (14) is analogous
to that for (11). It is

2

B¢, n) = Og(A, ) + 25—5—9 (A4, m) + 462 & 92(/1 )
A 2
(26 —) 03(A, 1)
3¢
(26 ‘—jﬁ> (452 ZA)al A4, + ... (23)
d¢ dez ) -

A straight forward calculation leads to the following
set:

Proi6; + foflo = 0,

with (24
6p=0 for n=0,8,=1 for - o,
—1p 4 ' 6(6 ’f)
Proio] + fof, — 250, = a(—A) 3,06, (29)
Pro10y + fofly — 4f 60, = f60, — f105 — 5260,
(26)
&8y, fo) (b, 11)
P—10u+ 91_4/9___
r s + 1005 f 003 2(A.n) A,
+ 2110, — 3£18) — 530, 27

etc. The boundary conditions for the last three
equations are: 6, =0 for n =0 and for  — oo,
wherei = 1,2 or 3.

3. FRICTION COEFFICIENT, DISPLACEMENT AND
MOMENTUM THICKNESS, AND NUSSELT NUMBER

The equations for f; and 6,(i = 0,1,2 and 3) have
been numerically integrated and the main results are
tabulated in the Appendix. With the aid of such
tabulation, the calculation of local wall shear, the
development of the displacement and momentum
thickness and the local Nusselt number become a
simple matter. The necessary input is the streamwise
velocity distribution at the edge of the boundary
layer, U(x), which may be deduced from experiments
or estimated from theory. In this section, we have
brought together the various formulas required for
the calculation.

Defining the local friction coefficient by

_ H(eu/2y),=

- 28
O T =
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we find, after transformation,

u;.

Y: f1(4,0)

1c,Ret = — (E\)Z(ZQ‘*Lf (4,0) + 2¢

+ 422 527 5(4,0) + \z¢~)f (A,0)+..]

’)\
77

in which Re = U L/v, as has previously been defined.

The disnlacement and the momentum thickness

100 CISPalolnoil ali momeniuimn NICkIes

are defined in the usual way, i.e.

(/ o [ u u
61= 1—'5 dy and 52= E 1—?] d.y,
o 0

(30
and the corresponding dimensionless counterparts
are

R o
st=|a-ram=22(2) G
e LU \2¢/ L
o
f , U (Re\)*a
B=1/1-fdyg= Lo e T (31b)
J er e/ L
°
It can be demonstrated that,
* * dA 2 2
oy =061, — 2fazf1(/1v ) — 4¢ &"fz(/is 00)
dA\?
26— fil4,0) —..., (32a)
where
Sk __ .. £64 .21
O1,s = LM —Jo\/b 1) Jp— w00
and
dZ
3 s+ 2 1 + 4¢2 1
f é é déz 2
+ (2¢ da 2I + (32b)
d¢)
where
Sa= [full=Sodn  dy=§ fi - 2pdn
I, = [£3(1 = 2f ) dn
(4]

and 1, = f [F30 — 2% — (£ dn.

We note that 8%, and 6% ; are respectively the dis-
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placement and momentum thickness associated with

the locally similar boundary layer. These boundary

layer functions are also tabulated in the Appendix.
We define the local Nusselt number as

:L_Bf_%=L(w) 5
y=0

N
" T, - T, oy

as was done by Merk. It follows then

r U |' dA
7D —4 _ ma-4tloca a9 (A MO
IVUIN = <Gy U\, V) T 4§ Ua, vy
LU, | ¢
424 (., dAY? 1
A2 LA MY N oia4 Mm 2
T ﬁfg d_62 Uz\ll, U} T \45 é“/ V3\11, vy T .. .J.

4, NUMERICAL SOLUTIONS AND ESTIMATES OF
THEIR ACCURACY

The differential equations for f; and (i = 0,1, 2
and 3) given in Section 2 were numerically integrated
using a seven-term Taylor expansion scheme on
IBM 360/75 digital computing system. The double
precision arithmetic was employed in all computa-

tions. Data for twentv-seven values of A ranging from
Uons. 1/aia 10T tWCHy-6CVON Vawuls O A ranging ircm

—0-15 to 1-0 and for seven values of Pr ranging from
0-01 to 100 have been computed and tabulated. A few
cursory comments on our experience are given
below; details may be found in a dissertation by
Fagbenle [12].

Very high accuracy is required of the basic function
Jo since the higher order functions in the hierarchy
are sensitive to its variation. The selection of the
integration step size depends on the precision of the
numerical results desired, the number of terms
retained in the Taylor expansion, the iterative scheme
used, and the computation time allowed. After

...... the step sizes finally
selected were: An = 0005 for 0 <9 <01 and
An = 001 for n > O-1. The iteration was to continue
uniii the foliowing condition was met :

|1~ folAn)| < 10712

several trials, integration

where 7., denotes some large value of 5. A value of 8
was found to be adequate in that the computed
second wall derivative f3(A, 0) exhibited no change
up to the twelfth significant digit when the computa-
tion was repeated with n, > 8. The results for
fo{A,0) obtained in this way agreed with those
published by Elzy and Sisson [13] within very close
limits for all A’s investigated. For example, when
A = =019, we find f5(A, 0) = 0-08569975180 which

may be compared with (:085699745 reported by Elzy
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and Sisson. When A = 1-0, the corresponding values
are 1-23258765687 and 1-2325877.

The integration of the f; equation requires the
evaluation of the derivatives é&f,/é4 and of ,/éA. A
second order central difference representation was
used, i.e.

|

o _ —SolA + 284 m) + 8folA + Ad.m) — 8fo(4 — AA. 1) + folA — 204, 7)
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given by Howarth himself. Schonauer employed a
finite difference scheme in which # denotes the mesh
size in the direction of the main stream and n is the
number of subdivisions normal to it. In Table 1(b)
the data for a circular cylinder in cross flow are
compared with the difference-differential solutions of

A

12A4 |

and the final choice of AA was 0-001. The integration
step sizes used for f; and f, were the same as those
used for f,, but larger values were used for f; as the
demand on accuracy became less stringent. A more
relaxed condition

[ fdA ) <107%i=1,2.3

was used to halt iteration in order to conserve com-
putation time. Unlike the case of f,, further iteration
beyond this point did not produce significant reduc-
tion in the residue | f{4.7,)| and only very minor
change in f}(4, 0) was observed.

We are not aware of any direct means of ascer-
taining the accuracy of our numerical program for f;.
A possible approach is to select flow situations for
which solutions are available and for which the
contribution of f; is greater than that of f, and f; by
an order of magnitude. It has been found that at
suitable locality in the linearly retarded stream of
Howarth [14] and of the forward portion of a
circular cylinder in crossflow, the calculation of the
local skin friction coefficient satisfies the foregoing
requirement. In Table 1(a), the results for the Howarth
flow are compared with those reported by Hartree
[15] and by Schénauer [16] in addition to those

Terrill [17] and the finite difference solutions of
Schénauer. The evidence presented, though limited
in scope, lends support to our contention that the
numerical program is satisfactory.

Very high accuracy is also required of the tempera-
ture function 8, for the same reason as that given for
fo- As one might expect, the Prandtl number has a
decisive influence on 5, when Pr = 100, 5, ~ 1-8
and when Pr = 0-01, n, ~ 60. The integration step
sizes used were identical to those selected for f, when
Pr > 0-7. However, for Pr = (-1 and 001, Ay was
increased to 005 for n > 5. The wall derivatives

w(A4, 0) evaluated in this manner agree with the data
reported by Elzy and Sisson up to the eighth (which
is also the last) significant digit for the entire range of
Pr and A investigated.

A second order central difference scheme was used
for the evaluation of 86,/84 and 80,/84, as was done
for the computation of f,/¢A. For all Pr greater than
0-1, AA was also 0-001. However, in the case of
Pr = 01 and 0-01, the computed results for 6, were
not satisfactory when A4 is close to unity. In this
region, 8; becomes relatively insensitive to changes
in A. There is some evidence that the roundoff errors
might be accentuated as extended regions of integra-

Table 1. Comparison of 3¢ Re™* calculated from different methods
(a) Howarth flow, U = U (1 — x/L), 3¢, = 1,/pU? and Re = Ux/v

Schonaver Present study
7= 300 200 No. of terms in equation {29}

x/L Howarth Hartree he=5x10-* 25 x 104 1 3 3 4
00256 029102 0-29188 0-29130 0-29170 0-27924 0-29216 0-29171 0-29090
{b) Circular cylinder in cross flow, U = 2U  sin 2x/D, 4c, = 7,/pU%. and Re = U D/v

Schonauver Present study
. n = 300 100 No. of terms in equation (29)
2x/D Terrill k = 0005 0-005 1 5
030 1-4276 1-4276 1-4276 1-4263 1-4275 1-4275 14274
0-50 2:2300 22300 22304 2-2243 2:2302 2:2301 2:2300
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tion are involved when the Prandtl number is small
(N, ~ 20 for Pr = 0.1 and 5, ~ 60 for Pr = 0-01). It
is possible that improved results may be obtained by
using a AA greater than 0-001, but this has not been
done.

5. TABLES OF SIGNIFICANT WALL DERIVATIVES
AND OTHER RELEVANT FUNCTIONS

In most applications, it is usually the surface
characteristics, such as the local wall shear and the
heat transfer rates, which are of interest. The calcu-
lation of these quantities requires only the information
on the wall derivatives, as is obvious from (29)
and (34). Those for the velocity functions f'(4.0)
are given in Table A.l in the Appendix and those for
the temperature functions 6/(A, 0) are given in Table
A.2(a)-(g) respectively for Pr =001, 01, 07, 1, §,
10 and 100. One may notice that the data are tabu-
lated at unequal intervals of A. The reasons are
twofold. First, A = 0-5 and 1 correspond respectively
to the front stagnation point of the rotationally
symmetrical and two-dimensional boundary layer
flows. Second, in the vicinity of the front stagnation,
either two-dimensional or rotationally symmetrical,
A is a slowly varying function of & or x. Hence, in
such regions, smaller increments in A are provided.
The inaccuracies in the data are judged to be confined
to the last digit quoted. For reasons already given
some results for Pr = -1 and 0-01 and for large values
of A are uncertain and, hence, are omitted in the
tabulation.

Table A3 and Table A4 are to be used in con-
Junction with (32a) and (32b) for the computation of
the displacement and the momentum thickness of
the boundary layer.

The determination of the velocity and the tempera-
ture fields in the boundary layer requires computer
printouts of the f; and 6; functions. These are on
deposit in the Heat Transfer Laboratory of the
University of lilinois at Urbana-Champaign. Alterna-
tively, they may be generated from the computer
program developed in this study.

6. ILLUSTRATIONS

To evaluate the usefulness and limitations of Merk’s
method, a number of non-similar boundary layer
flows have been analyzed. They include flows over
inclined flat surfaces, flow over an airfoil, cross flows
around elliptical cylinders of several aspect ratios
including the circular cylinder and, for the rotation-
ally symmetrical boundary layer, flow over a sphere.
The local friction and heat transfer coefficients, the
development of displacement and momentum thick-

ness and the velocity and temperature fields are
computedand compared with prior published results
whenever possible. in the interest of conserving
space, only a few are given here. Readers are referred
to [12] for more complete information.

6.1 Flow over inclined flat surface

A well known boundary layer flow is that along a
flat surface inclined at a small angle to the mainstream.
The velocity at the edge of the boundary layer varies
linearly with distance along the surface according to

U x
— =14
Ug L
where L is the inverse of the absolute magnitude of
the velocity gradient (d/dx}{U/U ). In (35) and other
expressions which follow, the positive sign is for
accelerated flow and the negative is for decelerated
flow. The case of the retarded flow was first studied
in detail by Howarth. It is of particular interest since
the reliability of most approximate methods deterio-
rates rapidly for boundary layers under an adverse
pressure gradient even though they may be quite satis-
factory for favourable pressure gradients. Further-
more, results of local friction coefficient evaluated by
Schénauer [16] and by Smith and Clutter [18] who
used a difference-differential scheme of integration
are available for comparison.

If we write, for convenience, C = 1 + {x/L), then
26=4(C2 -1, A=1~-C"2 2HdA/dE =2C~*
{1 — C~? and 4&Xd%4/dEH = - 8C™ 41 — C™ 32,
The variations of these functions with distance
measured along the surface are shown in Fig. 1. In
retarded flows, 2&(dA/d &) is negative, but it is positive
in accelerated flows and attains a maximum value of
0-5 at x/L = 0-4142.

The computed wall friction data, expressed as
¢;Re™%/2, (c; = 2t,/pU? and Re = Ux/v), are sum-
marized in Table 2. In retarded flows, there is a
significant difference between the present two-term
results and those of Evans. The discrepancy is less
pronounced in accelerated flows because the series in
(29) is then dominated by the first term for which the
equation given by Merk and later by Evans are
identical to ours. It should be noted that the Merk
series becomes semi-divergent for large negative
values of A and, in such instance, Euler’s transforma-
tion is employed for the evaluation of the sum. In
Table 2, data calculated from the straight 4-term sum
are also shown for the purpose of comparison. They
are fenced in dotted rectangular boundaries. The
series developed by Howarth was originally intended
for retarded flows. As it turned out, it could be used
for accelerated flows by simply changing the sign of

(35
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03 T T 12 T T T
(a) Retarded flow (b) Accelerated flow 5\
o2 - o8
ANy
— 04 ”
dh <
28y ¢
o
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ag? d2A
52
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x/ x4l
FiG. 1. Variation of £ A, 2¢ dA/d¢ and 4& d?A4/d¢? in
linearly retarded and accelerated flows.
10
o8
06
CA
Z
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° A:‘OIS} Computed from

a A=0 | Howarth's series
¢ A-0? (7 Terms)
02 -
0 | i t
0 05 10 15 20 25 30
iz U '
? M 12

FiG. 2. Velocity distribution in boundary layers with linearly
retarded and accelerated mainstream.

x/L in his series. However, it fails to converge for
large values of x/L. When this occurs, the series is
assumed to be semi-divergentt and Euler’s method of
finding the approximate sum is again used. The
evidence provided by the data in Table 2 contradicts
Evans’ statement “Merk’s approach, in common with
many other general methods, appears to break down
when it is applied to a retarded flow, certainly when
it is used to estimate the drag coefficient, ... ™

We have also evaluated the u-velocity distribution
using (9a) and (19). The results are shown as full lines

T It is not certain if this assumption could be justified.

in Fig. 2. Included for comparison are discrete data
calculated from Howarth’s series. The latter becomes
unreliable for 4 = 0-4 and 0-7, and hence, no com-
parison is made for these large A’s.

The local heat transfer results, expressed as
NuRe™?* for an isothermal flat surface in a fluid of
Pr = 0-7 are summarized in Table 3. The data are, to
a large extent, self-explanatory. The experimental
information was reported by Biiyiiktiir et al. [19].
While their study was aimed at examining the com-
bined effects of free stream turbulence and pressure
gradient on heat transfer, their measurements did
include those for low levels of turbulence and for
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Fr=07

o Data read from Buyuktir
and Kestin curve (1965)

0 05 10 15

20 25 30 35
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ZVVX

Fi1G. 3. Temperature distribution in boundary layers with
linearly retarded and accelerated mainstream. Pr = 0.7.

laminar boundary layers. These were taken at
x/I = n-IMR and D.2000 Riiviiktiir and Kectin 01

x/L 18 and 0-2000, Biiyiktiir and Kestin [20]
obtained a series solution for the energy boundary
layer equation using a method analogous to How-
arth’s. As such, it also fails to converge for large
positive values of x/L In Fig. 3, the temperature pro-
files calculated from the 4-term Merk series for both
retarded and accelerated flows are compared with
data reported by Bﬁyiiktiir and Kestin. The agree-
ment is very good indeed. Temperature profiles for
Pr = 100 have also been computed and they, too,
exhibit excellent agreement.

6.2 Elliptical cylinder in cross flow

The Blasius-Frossling method of solution
that the external stream velocity drstrlbutlon be
expressed in polynomials of x. For slender objects,
such as an eliiptical cylinder of large major-to-minor
diameter ratio and oriented with its major axis parallel
to the oncoming stream, the number of terms in the
polynomial representation could become unwieldily
large even if only modest accuracy is desired. This is

a maior hnndi.'ap of the method as has long bheen

a gyl LaRCGIeP O W0 IACUI0C &5 Has 104 URCD

known. The Merk method is free from this difficulty.

Schubauer [217] measured the velocity distribution
in the two-dimensionai iaminar boundary iayer over
an elliptical cylinder using hot wire anemometry. The
major and minor diameter of the cylinder were 11-78
and 3-98 inches respectively and, hence, the aspect

ratio was 2-96. The impinging airstream was parallel
to the major axis. Schubauer also measured the static

pressure dlstrlbutlon along the surface and calculated
therefrom U, dU/dx and d2U/dx2. He reported all

Udld in dpp‘ropndw UlIIlCIlblUIllUbb quanuucb lell'lg
the uniform velocity of the oncoming stream as the

requires
q

reference velocity and the minor diameter 2b of the

ellince ac the refarance lanoth TIf wa danata-
Cuipse as (n€ reierence ieéngin. il G 13

U/U, and X = x/2b, then

)
—J

o
C

¢ = SU 4%, 4 = 2 = and

36
da_. U %% [UU” —I (36)
Tttt ¥ Eelge )
ag 1% Lti\v) J J

where the prime denotes differentiation with respect
to X. Schubauer tabulated the data for U, U’ and
UU”[(U")? at various %’s and hence the Merk vari-
ables listed in (36) can be readily evaluated. The
second derivative (d%4/d¢?) was computed from the
first derivative using the central difference formula.
The results so obtained are piotied in Fig. 4. In
Schubauer’s experiments, the first measurement sta-
tion was located at x/2b = 0-175. However, in the
region 0 < x/2b < 0-175, the potential velocity distri-
bution is expected to prevail. The dotted curves in
Fig 4 were based on the potential theory,

With the availability of information on A, 2&(dA/d&)
and 4£%(d24/dé?), the u-component of the velocity
field in the boundary layer can be easily computed
with the aid of the computer printout for f (A, n). The
results for x/2b = 0-545, 1-097 and 1457 are plotted
and compared with Schubauer’s measured data in
Fig. 5. The agreement is as good as one may expect
for the smallest x/2b cited. The discrepancy is most
pronounced for the largest x/2b and in the outer
region of the boundary layer Once again, this is due

£ e sram Ao PR

to lllc Iact ulaL, uuuc1 LllC bd.lu Lil\aulllbtaubb, LuC

Merk series is non-converging and there are not
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FiG. 5. Comparison of predicted velocity distribution in
boundary layers over Schubauer’s elliptical cylinder with
experiments.

enough terms available for an effective application of
Euler’s procedure.

The local friction coefficient and the development
of the displacement and the momentum thickness are
displayed in Fig. 6. Portions of the curves are shown
dotted because of the uncertainty in the sum of Merk’s
series. Included in the figure are the skin friction data
reported by Smith and Clutter. In the region where
the Merk series exhibits satisfactory convergence, the
agreement is very good. The local heat transfer
results evaluated from the 4-term Merk series for Pr

ranging from 0-01 to 100 are exhibited in Fig. 7. We
are not aware of any data available for comparison.

7. CONCLUDING REMARKS
Merk’s method of analyzing the constant property,
laminar boundary layer flows is theoretically sound
and convenient to use. Since its introduction in 1959,
it has not received the attention it deserves. This is
probably due to the unfortunate error which Merk
introduced into the differential equations governing
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F1G. 6. Skin friction, displacement thickness and momentum
thickness of boundary layer over Schubauer’s elliptical
cylinder.

the universal functions. This error has led to mislead-
ing conclusions.

The appropriate series expansions for the flow
function f and the temperature function ¢ are pre-
sented and the significant wall derivatives of the
associated universal functions for the first four terms
of the series solution have been tabulated for wide
ranges of the wedge variable and of the fluid Prandtl
number. With the aid of these tables, the local friction
coefficient and the heat-transfer rates can be readily
computed once the outerstream velocity distribution
is known. The determination of the displacement and
momentum thickness is likewise a simple matter.
The nature of the convergence of the series provides
an indication of the reliability of the results. Based
on the large number of flow configurations examined
in [12], including the two reported in this paper, it
may be said that whenever the series exhibits rapid
convergence, accurate results can be expected. There
is some evidence, but it is not certain, that if the sum
of the series (not necessarily convergent) is dominated
by the first term, the result might still be expected to
be satisfactory. When the series is semi-divergent,
Euler’s method of ascertaining the sum should be
used. However, it is often not possible to obtain the
accuracy one desires due to the limited number of
terms available at the present time.
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20 E
20 ]
10 y
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I o7 |
o]
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FiG. 7. Predicted variation of local Nusselt number over
Schubauer’s elliptical cylinder for various Prandt] numbers.

When the outer stream velocity distribution can be
accurately described by polynomials of x with a
limited number of terms, the Blasius series method of
solution for the flow boundary layer and the Frossling
series for the temperature boundary layer could yield
results superior to Merk’s, particularly for the region
close to separation. This is the case for two-dimen-
sional boundary layer flows over blunt bodies, such
as a circular cylinder in cross flow. For slender objects,
the excessively large number of terms required in the
polynomial representation often precludes the use of
the Blasius and the Frossling series. The Merk method
is not subject to this limitation.
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Table of Universal Functions in Merk’s Method

Table A.1. Wall derivatives of velocity functions in Merk’s series

A f540) 11(4,0) f3(4,0) f5(4,0)
—-015 0-2163614060 00 —0-34791425 00 0-53071271 -01 —0-51628 00
—010 0-3192697599 00 —0-22259394 00 0-32254361 —01 —0-18908 00
—-005 0-4003225954 00 —0-16658150 00 023117684 -01 —0-10318 00
0-0 0-4695999884 00 —(0-13328326 00 0-17790554 -01 —0-65937 -01
0-05 0-5311296305 00 —0-11081394 00 0-14266708 —01 —0-45895 =01
010 0-5870352192 00 —0-94506819 -01 0-11760066 =01 —0-33722 -01
0-20 0-6867081810 00 —0-72319116 -01 0-84462348 —-02 —020184 —01
025 0-7319408485 00 —0-64423273 —01 0-73029089 -02 —0-16183 -01
0-27 0-7493354864 00 —0-61675179 -01 069105119 —02 —0-14889 -01
0-30 0-7747545803 00 —0:57916482 —01 0-63789690 -02 —0-13203 -01
0-32 0-7912822029 00 —0-55624668 -01 0-60580050 -02 —-012221 —01
035 0-8154917786 00 —0-52467156 -01 0-56200031 —02 -0-10928 -01
0-38 0-8390515708 00 —0-49605168 -01 0-52275156 -02 —098137 —-02
0-40 0-8544212312 00 —0-47842063 -01 0-49880198 —02 —091552 —-02
042 0-8695365931 00 —0-46183291 -01 0-47643879 —02 —0-85551 -02
045 0-8917585916 00 —(0-43872015 -01 0-44556751 —-02 —0-77506 —-02
0-48 0-9134714323 00 —0-41750661 -01 0-41754735 —02 —0-70445 -02
0-495 0-9241472445 00 —-(0-40754311 —01 0-40449664 -02 —0-67237 —02
0-50 0-9276800398 00 —0-40431112 -01 0-40027883 —02 —0-66210 -02
0-60 0-9958364406 00 —0-34775533 —01 0-32780850 -02 —0-49446 —02
0-70 0-1059807773 01 —0-30336067 -01 0-27292074 —02 —0-37883 -02
0-80 0-1120267657 01 —0-26771959 -01 0-23036177 -02 —0-29632 -02
0-85 0-1149345544 01 —(-25244490 —01 0-21258904 -02 —0-26389 -02
0-90 0-1177727819 01 —0-23857401 -01 0-19671607 -02 —-0-23598 -02
0-95 0-1205461255 01 —0-22593160 -01 0-18248449 —02 —0-21184 -02
0-98 0-1221807449 01 —0-21887326 -01 0-17464197 —02 —-0-19868 —-02
1-00 0-1232587657 01 —0-21436968 -01 0-16967820 —02 —0-19076 -02
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Table A.2(a). Wall derivatives of temperature functions in Merk’s series, Pr = 0-01

A 8(A4.0) 6,(4,0) 05(A,0) 05(4,0)
i 0-70805882 —01 0-170736 —-02 —0-496979 -03 0-1380 -01
10 071815184 -01 0-133665 —-02 —(0-350353 -03 0-4399 -02
»05 0:72470598 —01 0-114530 -02 —(0-281752 -03 0-2254 —-02
00 0-72957181 -01 0-101621 -02 —0-238810 -03 0-1402 -02
0-05 0-73342859 —01 0-919000 -03 —0-208302 -03 0-9692 —03
0-10 0-73660988 -01 0-841338 -03 —0-185132 —03 07167 -03
020 0-74163766 -01 0-722336 —03 —0-151449 -03 0-4453 —03
025 0-74368440 —01 0675077 -03 —0-138719 —03 0-3670 -03
0-27 0-74443668 -01 0-657877 -03 —0-134165 -03 0-3419 —03
030 0-74550322 -01 0-633651 -03 —0-127843 -03 0-3095 —03
032 0-74617660 - 0-618454 —03 —-0-123912 —03 0-2908 -03
035 0-74713561 -0 0-596947 -03 —0-118418 -03 0-2663 —03
0-38 0-74803890 —01 0-576839 —-03 —0-113348 -03 02458 -03
040 0-74861286 -01 0-564140 -03 -0-110189 -03 02338 -03
042 0-74916592 —01 0-551963 —03 —0-107160 -03 0-2231 —03
045 0-74995913 -01 (-534604 -03 —0-102918 -03 0-2094 -03
0-48 075071211 -01 0-518243 -03 —0-989336 -04 01979 -03
0-495 0-75107461 —01 0-510409 -03 —0-970516 -04 0-1930 -03
0-50 0-75119346 -01 0-507847 -03 —0:964352 —04 01915 -03
0-60 0-75338460 -01 0461182 -03 —0-853897 —04 0172 -03
0-70 0-75527813 -01 0421812 -03 —0-763634 —04 017 -03
0-80 0-75693761 -01 0-38812% -03 —0:788174 —04
0-85 075769438 -01 0-373039 -03 —0-654899 —04
0-90 0-75840875 -01 0-358964 -03 —-0-625142 —04
095 0-75908464 -01 0-345811 -03 —0-596639 —04
0-98 0-75947315 -01 0338318 -03 —0-580805 —04
1-00 0-75972547 -01 0333483 -03 —0-570806 —04
Table A.2(b). Wall derivatives of temperature functions in Merk’s series, Pr = 01
%\ 8o(4. 0) 81(4.0) 8(A. 0) 5(4,0)
-015 0-18392003 00 0-149640 —02 —0-170851 -02 0-5442 -01
-010 0-19043811 00 0313229 -02 —0-145993 -02 0-1809 -01
-005 0-19476614 00 0-355800 -02 —0-129596 -02 0-9630 —02
00 0-19803148 00 0365822 -02 —0-117102 -02 0-6198 -02
0-05 ~ 20065329 00 0-363428 —02 —0-106993 -02 0-4419 -02
010 0-20283959 00 0-355625 -02 —0-985358 -03 03355 -02
0-20 0-20634142 00 0-334175 -02 —0-850196 -03 02172 -02
025 0-20778433 00 0322681 -02 —0-794968 -03 0-1815 -02
027 0-20831732 00 0318101 -02 —0-774683 —03 0-1698 -02
030 0-20907548 00 0-311300 -02 —0-745963 -03 0-1544 -02
032 0-20955570 00 0-306830 -02 —0-727862 -03 0-1454 -02
035 021024171 00 0-300239 -02 —0-702143 -03 0-1333 -02
0-38 0-21089015 00 0-293801 -02 — 0677999 -03 01227 -02
0-40 0-21130336 00 0-289600 -02 —0-662706 —03 0-1164 -02
042 0-21170240 00 0-285476 -02 —0-648011 -03 0-1106 -02
045 021227624 00 0279434 -02 —0-627014 -03 0-1026 —02
0-48 0-21282268 00 0273568 —-02 —-0-607179 -03 09555 —03
0-495 021308633 00 0-270701 -02 —0-597668 —-03 0-9229 —03
0-50 0-21317287 00 0-269755 -02 —0-594555 -03 09123 —-03
0-60 0-21477585 00 0251839 -02 —0-537728 -03 07357 -03
0-70 0-21617330 00 0235724 -02 —0-489643 —03 0-6064 -03
0-80 021740775 00 0221228 -02 —0-448463 —03 0-5086 -03
0-85 0-21797384 00 0-214528 -02 —~0-430026 —03 0-468 —03
0-90 0-21851006 00 0-208163 -02 —~0-412654 -03
095 0-21901908 00 0202111 —-02 —0-396677 —03
0-98 0-21931256 00 0-198622 -02 —0-387825 -03
1-00 0-21950324 00 0-196353 -02 —0-382714 —03
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Table A.2(c). Wall derivatives of temperature functions in Merk’s series, Pr = 0-7
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A (A, 0 {4, 0 9{4,0) 63(A,0)

—015 0-36437310 00 —0-143080 -01 —0-220544 -02 01213 00

—010 038697144 00 —0-170425 —02 —0-281147 -02 0-4058 -01

—0-05 040223618 00 0-285552 -02 —0-287760 -02 02195 —01
00 041391234 00 0-504331 —02 —0-281456 —02 0-1440 —01
005 0-42339971 00 0621307 -02 —0-271093 -02 0-1047 -01
610 0-43139604 00 0-686238 -02 —0-259549 —02 0-8096 —02
020 044438443 00 0-739469 —-02 —0-236714 —02 0-5420 -02
025 0-44980780 00 0-746032 -02 —0-226072 —02 0-4599 -02
027 0-45182258 00 0-746471 -02 —0221993 —02 04328 —02
030 0-45469958 00 0-745368 —02 —0-216069 —-02 0-3968 —02
032 0-45652881 00 0-743667 -02 —0-212250 -02 03756 —02
035 0-45915149 00 739953 -02 —0-206711 -02 0-3470 -02
038 0-46164123 00 0-735117 -02 —0-201396 -02 03218 -02
040 046323332 00 0731395 —02 —0-197973 —02 0-3067 —02
042 0-46477502 00 0727346 —-02 —0-194643 -02 02927 —-02
045 0-46699943 00 0-720770 —02 —0-189817 -0z 0-2735 -02
0-48 0-46912590 00 0-713718 —-02 —0-185186 —-02 0-2563 -02
0495 0-47015489 00 0-710051 -02 —0-182941 -02 0-2483 —-02
050 0-47049304 00 0-708811 -02 —0-182203 -02 02457 —02
0-60 047679616 00 0-682773 —02 —0-168436 —02 0-2021 -02
0-70 0-48235487 00 0-655790 -02 —0-156361 —02 0-1695 —02
0-80 0-48731812 00 0-629120 -02 —0-145713 -02 0-1444 —02
0-85 0-48961155 00 0-616112 —02 —0-140854 -02 0-1339 -02
0-90 0-49179451 00 0-603385 -02 ~0-136271 -02 0-1246 -02
095 0-49387645 00 0590969 -0z —0-131944 -02 01162 —02
0-98 0-49508063 00 0-583675 —02 —0-129463 —02 01116 -02
1-00 0-49586569 00 0-578879 —02 —0-127853 -02 0-1086 —02

Table A.2{d). Wall derivatives of temperature functions in Merk’s series, Pr = 1
A 05(4,0) 04(4, 0) (A4, 0) 03(A,0)

-015 0-40933631 00 —0-197681 -01 —0-222206 -02 0-1406 00

-010 0-43679753 00 —0-367636 -02 —0-311802 -02 0-4687 -01

—0-05 0-45537196 00 0-220258 -02 —0-326815 -02 02534 -1
0-0 0-46959999 00 0-506246 -02 —0-323329 —02 0-1664 -01
005 0-48117747 00 0-662242 -02 —0-313613 -02 01210 —01
010 0-49094928 00 0-751499 -02 —0-301732 -02 09369 —u2
020 0-50685378 00 0-831034 -02 —0-277044 -02 0-6285 —02
0-25 0-51350838 00 0-844630 -02 —0265257 —02 0-5339 -02
0-27 0-51598281 00 0-847175 -02 —0-260709 -02 0-5026 —02
030 0-51951842 00 0-848643 -02 —0-254078 —02 04611 —-02
032 0-52176781 00 0-848322 -02 —0-249787 —02 0-4365 -02
035 0-52499488 00 0-846261 —02 —0-243547 -02 0-4035 —-02
038 0-52806050 00 0-842661 -02 —0-237541 -02 0-3745 —-02
0-40 053002217 00 0-839567 —02 —~0-233664 -02 0-3570 -02
042 0-53192256 00 0-836011 -02 —0-229886 —02 0-3408 -02
045 0-53466610 00 0-829956 -02 —0-224402 -02 0-3186 —02
0-48 0-53729063 00 0-823203 -02 —0-219128 -02 02987 -02
0-495 0-53856128 00 0-819613 —02 —0-216568 -02 0-2895 —02
0-50 0-53897894 00 0-818389 -02 —-0-215726 -02 0-2865 —02
0-60 0-54677286 00 0-791870 -02 —0-199976 -02 02360 —02
0-70 0-55366082 00 0-763363 -02 —0-186105 -02 0-1982 -02
0-80 0-55982323 00 0-734592 -02 —0-173832 —-02 0-1691 -02
085 0-56267490 00 $-720407 -02 —0-168218 —02 ¢-1570 -02
090 0-56539171 00 0-706453 —02 —0-162919 —02 0-1461 -02
0-95 0-56798513 00 0692773 —02 —0-157908 -02 01364 -02
0-98 0-56948621 00 0684710 —-02 —0-155032 -02 01310 —02
1-00 057046525 00 0-679399 —02 —0-153166 —-02 01276 -02
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Table A.2(e). Wall derivatives of temperature functions in Merk’s series, Pr = 5

A 0,(A,0) 0,(A,0) 05(A, 0) 03(4, 0)
-015 0-68330186 00 —0-558285 -01 —0-279369 ~02 0-2840 00
-010 0-74362901 00 —0-159038 -01 —0-546172 ~02 09337 -01
—0-05 0-78434114 00 —0-138098 -02 -0-605684 ~02 0-5020 -01
00 0-81556125 00 0-573642 ~02 —0-613100 ~02 03284 -01
0-05 0-84103038 00 0-969494 -02 —0-602159 ~02 (0-2383 -0t
010 0-86259826 00 0-120401 -01 —0-584057 ~02 0-1842 -01
0-20 0-89789713 00 0-143397 —01 —0-541959 ~02 01232 -~01
025 091275733 00 0-148541 -01 —0-520945 ~02 0-1045 01
027 0-91829892 00 0-149889 -01 —0:512747 ~02 0-9830 —02
030 092623326 00 0-151329 -01 —0-500725 ~02 0-9013 -02
0-32 093129158 00 0-151964 -01 —0-492908 ~02 0-8530 -02
0-35 0-93856327 00 0-152520 -01 —0-481496 ~02 0-7881 -02
0-38 0-94548835 00 0-152682 -01 —0-470467 ~02 0-7310 -02
0-40 0-94992835 00 0-152610 -01 —0-463328 -02 0:6966 -02
0-42 0-95423682 00 0-152417 -01 —0-456359 -02 0-6648 -02
045 0-96046933 00 0-151934 -01 —0-446220 ~02 06214 ~02
0-48 0-96644583 00 0151259 -01 —0-436451 -02 0-5823 ~02
0495 0-96934449 00 0-150862 -01 —0-431701 —02 0-5643 -02
0-50 0-97029802 00 0-150722 -01 —0-430137 —02 0-5585 ~02
0-60 0-98816357 00 0-147289 ~01 —0-400827 -02 0-4597 -02
070 0-10040734 01 0-143132 -0t —0:374914 —02 0-3861 -02
0-80 0-10184126 01 0-138685 -01 —0-351924 -02 0-3295 ~-02
0-85 0-10250840 01 0136431 ~01 - 0-341391 -02 0-3059 ~-02
0-90 010314621 01 0-134183 -01 —0-331435 -02 (0-2848 -02
0-95 0-10375712 01 0-131954 -01 —0-322015 —02 02659 ~-02
098 0-10411168 01 0-130630 -01 —0-316602 —02 0-2556 ~-02
1-00 0-10434331 01 0-129755 -01 —(-313089 -02 0-2488 ~02
Table A.2(f). Wall derivatives of temperature functions in Merk’s series, Pr = 10
4 05(A,0) 01(4,0) 05(A,0) 63(4, 0)
—015 0-85084868 00 —0-786843 ~01 -0352775 =~ 02 0-3866 00
-0-10 0-93265297 00 —0-228181 ~01 -0-724162 -02 0-1265 00
-0-05 0-98764038 00 —0-281195 ~02 —0-804489 —02 0-6783 ~01
00 0-10297473 01 0-689437 ~02 —0-813420 -02 04427 -01
0-05 0-10640859 01 0122551 ~01 —0-797758 -02 0-3204 ~01
010 0-10931711 01 0-154154 ~-0! —0:772764 -02 0-2470 —01
020 0-11408161 01 0-185023 ~01 —0-715619 -02 0-1645 ~01
025 0-11608996 01 0-191926 -01 —0-687366 -02 01393 —01
0-27 011683941 01 0-193739 ~01 —0-676379 -02 01310 —01
0-30 0-11791300 01 0-195684 ~01 —0-660298 —02 01199 01
0-32 0-11859778 01 0-196550 ~01 —0-649862 —-02 01134 -01
035 0-11958272 01 0-197320 —01 —0-634650 -02 0-1047 -01
0-38 0-12052130 01 0-197569 —-01 —0-619974 -02 0:9704 —02
0-40 0-12112340 01 0-197498 -01 —0-610488 -02 09242 -02
0-42 012170791 01 0197266 -01 —-0-601237 —-02 0-8816 —02
0-45 012255390 01 0-196664 -01 —0-587794 —-02 0-8233 —02
0-48 012336568 01 0-195810 -01 —0-574858 -02 0-7711 -02
0-495 0-12375959 01 0-195304 -01 —0-568574 -02 0-7469 -02
0-50 0-12388920 01 0-195125 -01 —0-566506 —-02 0-7391 -02
0-60 0-12632030 01 0-190724 -01 —0-527816 -02 0-6072 -02
0-70 0-12848999 01 0-185377 -01 —0-493716 -02 0-5091 —02
0-80 0-13044968 01 0-179654 -01 —0-463535 -02 04339 -02
085 013136288 01 0-176754 —01 —0-449729 -02 0-4025 —-02
0-90 013223684 01 0173862 —01 —0-436692 —02 0-3745 -02
0-95 013307482 01 0-170997 -01 —-0-424366 —-02 0-3495 —-02
0-98 0-13356154 01 0-169296 -01 —0-417288 —-02 0-3358 —02
1.00 013387968 01 0168170 —-01 —0-412696 —-02 0-3270 —-02
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Table A.2(g). Wall derivatives of temperature functions in Merk’s series, Pr = 100

239

A 0y(A,0) 6,(4,0) 05(A,0) 03(4,0)
—015 0-17772150 01 —0-210392 00 —0-925267 ~02 01023 01
—-010 0-19831270 01 —0-578866 -01 —0-186168 -01 0-3305 00
—0-05 0-21193184 01 —0-671903 -02 —0-202392 -01 01757 00
00 0-22229058 01 0170770 -01 —0-201615 -01 01137 00
0-05 0-23071280 01 0-297878 -01 —0-195610 —01 0-8157 -01
010 0-23783857 01 0-370567 -01 —0-187940 -01 0-6239 -01
0-20 024951462 01 0438377 -01 —0-172051 —01 0-4097 -01
025 0-25444333 01 0-452382 -01 —0-164572 —01 0-3448 -01
027 0-25628429 0t 0-455829 -01 -0-161707 -01 0-3235 -01
030 0-25892337 01 0-459258 -01 —0-157549 —01 02954 -01
032 0-26060803 01 0-460585 -01 —0-154872 —01 02788 -01
035 0-26303307 01 0461413 -ul —0-150997 -01 0-2566 -01
038 0-26534635 01 0461106 -01 — 0147285 —01 02372 -01
0-40 0-26683160 01 0-460389 -01 —0-144899 -01 0-2255 -01
0-42 0-26827451 01 0-459331 -01 —0-142582 -01 0-2148 -01
0-45 0-27036482 0t 0-457208 -01 —0-139230 -01 0-2001 -0t
048 0-27237280 01 0-454560 -01 —0-136021 -01 01870 -01
0-495 0-27334799 01 0-453075 -01 —0-134468 -01 0-1809 -01
0-50 0-27366898 01 0-452559 -0 —0-133957 -01 0-1790 -01
0-60 0-27970169 01 0-440625 -01 -0-124473 -01 0-1461 -01
0-70 0-28510652 01 0-426955 -01 —0-116205 -01 01219 --01
0-80 0-29000712 01 0412755 -01 —0-108952 -01 01034 -01
0-85 0-29229740 01 0-405667 -01 —0-105652 -01 09577 -02
090 0-29449342 01 0-398655 -01 —0-102547 -01 0-8896 -02
0-95 0-29660300 01 0391751 -01 —0:996184 -02 0-8288 -02
0-98 0-29783015 01 0-387671 -01 —0-979408 -02 0-7954 -02
1-00 0-29863301 01 0-384979 -01 —0-968537 -02 0-7742 —-02
Table A.3. Functions related to displacement thickness
4 3t f1(4, ) f2(A. ) f3(4, 00)
—015 1-64697 —1-03100 0-164068 —2:00140

-010 1-44270 —0-559175 0-086114 —0-632520

—0-05 1-31236 —0-374228 0-056019 —0-310977

00 121678 —0-274603 0-040050 —0-183335

0-05 1-14174 ~0-212536 0-030250 -0-119524

010 1-08032 —0-170425 0023699 —~0-083117

0-20 0-98416 —-0-117576 0-015649 —0045503

025 0-94533 —0-100138 0-013054 —0-035145

027 093111 —0-094253 0012187 —0-031889

0-30 091099 —0-086362 0011033 —0-027720

032 0-89832 —0-081645 0010348 —0-025335

035 0-88030 —0-075264 0-009428 —0-022243

0-38 0-86337 —0-069605 0-008619 —0-019629

040 0-85263 —0-066178 0-008133 —0-018107

042 0-84229 - 0062997 0-007684 —0-016736

045 0-82751 —0-058636 0-007072 —0-014922

048 0-81349 —0-054709 0-006526 —0-013357

0-495 0-80676 —0-052889 0-006275 —0-012653

0-50 0-80455 —0-052303 0-006194 —0-012428

0-60 076397 —0-042331 0004839 —0-008851

070 0-72910 —0-034916 0-003858 —0-006484

0-80 0-69868 —0-029251 0-003128 —0-004835

0-85 0-68486 —0-026907 0-002832 —~0-004210

090 067183 —0024826 0-002572 —0-003678

095 0-65954 —0-022969 0-002344 —0-003233

098 0-65248 —0-021950 0-002219 —-0-002929

1.00 0-64790 —0-021306 0-002141 —0-002820
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Table A 4. Integrals related to momentum thickness

A I, = 8%, I I I,
—015 0-545184 0173751 —0-029827 0238793
-010 0-515044 0129761 —0-021580 0116992
—005 0-490464 0103525  —0-016755 0-073403

00 0-469600 0085481 —0-013495 0050972

005 0-451469 0072177  —0011133 0037482

010 0-435457 0061939  —0-009345 0028619

020 0-408230 0047243 —0-006837 0017979

025 0396485 0041818  —0-005934 0-014636

027 0-392074 0030909  —0005619 0-013532

030 0-385735 0037281  —0-005190 0012076

032 0-381681 0-035671 —0-004928 0011218

035 0-375841 0033443 —0-004569 0010076

038 0-370267 0031416  —0-004245 0-009081

0-40 0-366690 0030163  —0-004047 0-008488

042 0-363212 0028368  —0-003860 0-007939

045 0-358191 0027338  —0-003603 0:007209

048 0-353373 0025824  —0-003368 0-006561

0495 0351037 0025113  —0-003258 0:006263

050 0-350269 0024882  —0-003222 0-006167

0-60 0-335906 0020850  —0-002610 0-004595

070 0323203 0:017701 ~0-002145 0:003490

080 0-311842 0015194  —0-001784 0-002668

0-85 0-306601 0014129  —0-001634 0-002349

0-90 0301617 0013167  —0-001500 0-002071

095 0-296859 0012297  —0-001380 0-001838

098 0:294120 0011813  —0-001315 0001638

100 0292339 0011506  —0-001273 0001603

SUR LA METHODE DE MERK POUR LE CALCUL DU TRANSFERT EN COUCHE
LIMITE

Résumé—On examine en détail la procédure de Merk pour le calcul du transfert en couche limite a partir

des solutions du coin. Sont fausses les équations différentielles gouvernant la fonction universelle dans le

second terme de sa solution en développement en série, pour les équations de quantité de mouvement et

d’énergie. On a obtenu des solutions numériques des équations corrigées. On a de plus évalué et tabulé

les fonctions universelles associées aux deux termes d’ordre supérieur. Avec une telle information, on

peut évaluer la précision des résultats. On donne des exemples qui illustrent la commodité aussi bien que
les limites de la méthode.

DIE MERK’SCHE BERECHNUNGSMETHODE DES GRENZSCHICHT-UBERGANGS

Zusammenfassung— Die Merk’sche Methode zur Berechnung von Grenzschichtiibergidngen unter Beniit-

zung von Keillosungen wird im Einzelnen iiberpriift. Die Differentialgleichungen, welche die universelle

Funktion im 2. Term der Reihenentwicklung fiir Impuls- und Energiegleichung von Grenzschichten

beeinflussen, sind fehlerbehaftet. Numerische Losungen fiir die korrekten Gleichungen wurden erhalten.

Zusitzlich wurden die mit den zwei Gliedern hoherer Ordnung verkniipften universellen Funktionen

entwickelt und tabelliert. Damit lasst sich die Genauigkeit der Ergebnisse beurteilen. An Beispielen werden
Brauchbarkeit und Grenzen der Methode gezeigt.

O METOJE MEPHA PACYETA NNEPEHOCA B INIOTPAHUYHOM CJIOE

Annorannsi—Ha npuMmepe pelneHmit A KIMHA NOAPOGHO paccMarpuBaeTca MeTon Mepka
pacdyera IepeHOCA B IOrpaHNYHOM cioe. JAnddepeHnualibHble ypaBHEHUA, OINKMCHIBAIOU[ME
yHUBepcanbHyo PyHKUMIO BO BTOPOM 4ieHEe NPEJJI0KEHHOTO UM pellleHUd B BUAe pAAA AJA
ypaBHeHU! NOTPAHUYHOTO CJIOS AJIA MMIYJbCA WM SHEPTHM, ABIALTCA omuboynbiMu. [Tomy-
4eHBI YMCIIEHHBIE pelleHNs MCIPaBIeHHBIX ypasHeHuii. Kpome Toro, npoBefeH pacder M
COCTABJIEHH TaGaMIH YHUBePCAAbHHIX QYHKUIUI MJIA ABYX YJeHOB Bhicilero mopAgka. Ilpu
HAIVYMM TAKON MHPOPMAIIM MOMKHO C JOCTOBEDHOCTBIO TOBOPUTH O TOWHGCTH pe3yJIbTATOB.
Ha npuMepax nokasaHH NOCTOMHCTBA U OTPAHUYEHMA, CBONCTBEHHBIE METONY .



